北京经济管理职业学院临空经济管理学院,北京 100102
[ "柳虎威(1994- ),男,北京经济管理职业学院讲师,主要研究方向为优化理论与方法。" ]
[ "周丽(1978- ),女,北京经济管理职业学院教授、副院长,主要研究方向为优化理论与方法。" ]
收稿:2025-06-30,
修回:2025-08-13,
纸质出版:2025-12-20
移动端阅览
柳虎威,周丽.面向6G卫星互联网的多层级智能决策优化框架设计[J].天地一体化信息网络,2025,06(04):72-83.
LIU Huwei,ZHOU Li.Multi-Level Intelligent Decision Optimization Framework for 6G Satellite Internet[J].Space-Integrated-Ground Information Networks,2025,06(04):72-83.
柳虎威,周丽.面向6G卫星互联网的多层级智能决策优化框架设计[J].天地一体化信息网络,2025,06(04):72-83. DOI: 10.11959/j.issn.1000-0801.2025040.
LIU Huwei,ZHOU Li.Multi-Level Intelligent Decision Optimization Framework for 6G Satellite Internet[J].Space-Integrated-Ground Information Networks,2025,06(04):72-83. DOI: 10.11959/j.issn.1000-0801.2025040.
随着6G通信技术的发展,低轨卫星互联网凭借其全球覆盖、低时延等优势成为构建天地一体化网络的关键技术。然而,6G卫星互联网系统面临星座配置、资源调度和业务优化等多层级强耦合决策问题,现有单层优化方法难以有效处理层间依赖关系。针对该问题,提出一种面向6G卫星互联网的多层级智能决策优化框架。首先构建涵盖星座部署、资源调度和业务优化的3层决策模型,建立层间信息交互和约束传递机制;然后设计基于改进遗传算法、凸优化分解和多智能体深度强化学习的混合智能算法,通过交替方向乘子法实现多层级协调优化;最后基于MATLAB仿真平台验证框架性能。实验结果表明,相比传统分层优化和启发式算法,该框架在系统容量、频谱效率和QoS满足度方面分别提升(8.6±1.2)%、(10.8±1.3)%和(6.5±0.8)%。
With the development of 6G communication technology
LEO satellite Internet has become a key technology for constructing space-terrestrial integrated networks due to its advantages of global coverage and low latency. However
6G satellite Internet systems face multi-level strongly coupled decision-making problems such as constellation configuration
resource scheduling
and service optimization
and existing single-layer optimization methods are difficult to effectively handle inter-layer dependencies. To address this issue
a multi-level intelligent decision optimization framework for 6G satellite Internet is proposed. First
a three-layer decision model covering constellation deployment
resource scheduling
and service optimization is constructed
and inter-layer information interaction and constraint transfer mechanisms are established. Then
a hybrid intelligent algorithm based on improved genetic algorithm
convex optimization decomposition
and multi-agent deep reinforcement learning is designed
and multi-level coordinated optimization is achieved through alternating direction method of multipliers. Finally
the framework performance is verified based on MATLAB simulation platform. Experimental results show that compared with traditional hierarchical optimization and heuristic algorithms
the framework improves system capacity
spectrum efficiency
and QoS satisfaction by (8.6±1.2)%
(10.8±1.3)%
and (6.5±0.8)%
respectively.
张平 , 陈岩 , 吴超楠 . 6G: 新一代移动通信技术发展态势及展望 [J ] . 中国工程科学 , 2023 , 25 ( 6 ): 1 - 8 .
ZHANG P , CHEN Y , WU C N . Six-generation mobile communication: development trend and outlook [J ] . Strategic Study of Chinese Academy of Engineering , 2023 , 25 ( 6 ): 1 - 8 .
LETAIEF K B , CHEN W , SHI Y , et al . The roadmap to 6G: AI empowered wireless networks [J ] . IEEE Communications Magazine , 2019 , 57 ( 8 ): 84 - 90 .
倪少杰 , 岳洋 , 左勇 , 等 . 卫星网络路由技术现状及展望 [J ] . 电子与信息学报 , 2023 , 45 ( 2 ): 383 - 395 .
NI S J , YUE Y , ZUO Y , et al . The status quo and prospect of satellite network routing technology [J ] . Journal of Electronics & Information Technology , 2023 , 45 ( 2 ): 383 - 395 .
CHEN S , SUN S , KANG S . System integration of terrestrial mobile communication and satellite communication-the trends, challenges and key technologies in B5G and 6G [J ] . China Communications , 2021 , 17 ( 12 ): 156 - 171 .
KODHELI O , LAGUNAS E , MATURO N , et al . Satellite communications in the new space era: a survey and future challenges [J ] . IEEE Communications Surveys & Tutorials , 2020 , 23 ( 1 ): 70 - 109 .
REMILI K D , BOUZOURINE N , HARTANI R , et al . Tech diplomacy and critical technologies: case of the LEO satellite internet [J ] . Telecommunications Policy , 2025 , 49 ( 4 ): 102947 .
杜星葵 , 束妮娜 , 刘春生 , 等 . 低轨卫星网络安全问题及防御技术综述 [J ] . 电子与信息学报 , 2025 , 47 ( 6 ): 1609 - 1622 .
DU X K , SHU N N , LIU C S , et al . Overview of security issues and defense technologies for low earth orbit satellite network [J ] . Journal of Electronics & Information Technology , 2025 , 47 ( 6 ): 1609 - 1622 .
DEL PORTILLO I , CAMERON B G , CRAWLEY E F . A technical comparison of three low earth orbit satellite constellation systems to provide global broadband [J ] . Acta Astronautica , 2019 , 159 : 123 - 135 .
李科新 , 尤力 , 高西奇 . 基于大规模MIMO的低轨卫星通信系统 [J ] . 天地一体化信息网络 , 2022 , 3 ( 1 ): 2 - 8 .
LI K X , YOU L , GAO X Q . Massive MIMO LEO satellite communications system [J ] . Space-Integrated-Ground Information Networks , 2022 , 3 ( 1 ): 2 - 8 .
ZHANG Z , ZHANG W , TSENG F H . Satellite mobile edge computing: improving QoS of high-speed satellite-terrestrial networks using edge computing techniques [J ] . IEEE Network , 2019 , 33 ( 1 ): 70 - 76 .
CHEN Q , GIAMBENE G , YANG L , et al . Analysis of inter-satellite link paths for LEO mega-constellation networks [J ] . IEEE Transactions on Vehicular Technology , 2021 , 70 ( 3 ): 2743 - 2755 .
郑爽 , 张兴 , 王文博 . 低轨卫星通信网络路由技术综述 [J ] . 天地一体化信息网络 , 2022 , 3 ( 3 ): 97 - 105 .
ZHENG S , ZHANG X , WANG W B . Survey of low earth orbit satellite communication network routing technology [J ] . Space-Integrated-Ground Information Networks , 2022 , 3 ( 3 ): 97 - 105 .
JIA M , ZHU S , WANG L , et al . Routing algorithm with virtual topology toward to huge numbers of LEO mobile satellite network based on SDN [J ] . Mobile Networks and Applications , 2018 , 23 : 285 - 300 .
WANG M , CUI Y , WANG X , et al . Machine learning for networking: workflow, advances and opportunities [J ] . IEEE Network , 2017 , 32 ( 2 ): 92 - 99 .
FERREIRA P V R , PAFFENROTH R , WYGLINSKI A M , et al . Multi-objective reinforcement learning for cognitive satellite communications using deep neural network ensembles [J ] . IEEE Journal on Selected Areas in Communications , 2018 , 36 ( 5 ): 1030 - 1041 .
MA F , ZHANG X , LI X , et al . Hybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation system [J ] . GPS Solutions , 2020 , 24 : 62 .1-62. 14 .
CRISP N H , SMITH K L , HOLLINGSWORTH P . Launch and deployment of distributed small satellite systems [J ] . Acta Astronautica , 2015 , 114 ( 9 ): 65 - 78 .
AN K , LIANG T , YAN X , et al . Power allocation in land mobile satellite systems: an energy-efficient perspective [J ] . IEEE Communications Letters , 2018 , 22 ( 7 ): 1374 - 1377 .
CHEN M , WANG T , ZHANG S , et al . Deep reinforcement learning for computation offloading in mobile edge computing environment [J ] . Computer Communications , 2021 , 175 : 1 - 12 .
LI W , JIA L , CHEN Q , et al . A game theory-based distributed downlink spectrum sharing method in large-scale hybrid satellite constellations [J ] . IEEE Transactions on Communications , 2024 , 72 ( 8 ): 4620 - 4632 .
LIU X , ZHOU H , ZHANG Z , et al . Multipath cooperative routing in ultra-dense LEO satellite networks: a deep reinforcement learning-based approach [J ] . IEEE Internet of Things Journal , 2025 , 12 ( 2 ): 1789 - 1804 .
ITU-R . Framework and overall objectives of the future development of IMT for 2030 and beyond [R ] . 2023 .
BOYD S , PARIKH N , CHU E , et al . Distributed optimization and statistical learning via the alternating direction method of multipliers [J ] . Foundations and Trends in Machine Learning , 2011 , 3 ( 1 ): 1 - 122 .
SCHULMAN J , WOLSKI F , DHARIWAL P , et al . Proximal policy optimization algorithms [J ] . arXiv preprint arXiv: 1707.06347 , 2017 .
BERTSEKAS D P . Nonlinear programming [M ] . Belmont : Athena Scientific , 2016 .
3GPP. Study on scenarios and requirements for next generation access technologies [R ] . 2017 .
LIMANI X , CAMELO M , MARQUEZ-BARJA J M , et al . Unveiling network sharing capabilities enabled by 5G network slicing [C ] // 2025 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2025 : 1 - 3 .
ANANDALINGAM G , FRIESZ T L . Hierarchical optimization: an introduction [J ] . Annals of Operations Research , 1992 , 34 : 1 - 11 .
FENG X , LI Y , XU M . Multi-satellite cooperative scheduling method for large-scale tasks based on hybrid graph neural network and metaheuristic algorithm [J ] . Advanced Engineering Informatics , 2024 , 60 : 102362 .
KENNEDY J , EBERHART R . Particle swarm optimization [C ] // Proceedings of ICNN’95-International Conference on Neural Networks . Piscataway : IEEE Press , 1995 , 4 : 1942 - 1948 .
DEB K , PRATAP A , AGARWAL S , et al . A fast and elitist multiobjective genetic algorithm: NSGA-II [J ] . IEEE Transactions on Evolutionary Computation , 2002 , 6 ( 2 ): 182 - 197 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621