浏览全部资源
扫码关注微信
[ "唐斯琪(1993-),女,陆军工程大学指挥控制工程学院博士生,主要研究方向为人工智能、卫星互联网运维管理" ]
[ "潘志松(1973-),男,博士,陆军工程大学教授,主要研究方向为人工智能、模式识别" ]
[ "胡谷雨(1963-),男,博士,陆军工程大学教授,主要研究方向为计算机网络、通信网络管理和网络智能化技术" ]
[ "吴炀(1992-),男,陆军工程大学指挥控制工程学院博士生,主要研究方向为卫星互联网组网技术" ]
[ "李云波(1994-),男,硕士,陆军工程大学指挥控制工程学院讲师,主要研究方向为人工智能" ]
网络出版日期:2021-12,
纸质出版日期:2021-12-20
移动端阅览
唐斯琪, 潘志松, 胡谷雨, 等. 智能化卫星互联网运维与管理:现状与机遇[J]. 天地一体化信息网络, 2021,2(4):75-83.
Siqi TANG, Zhisong PAN, Guyu HU, et al. Intelligent Satellite Internet Maintenance and Management:Progress and Opportunities[J]. Space-integrated-ground information networks, 2021, 2(4): 75-83.
唐斯琪, 潘志松, 胡谷雨, 等. 智能化卫星互联网运维与管理:现状与机遇[J]. 天地一体化信息网络, 2021,2(4):75-83. DOI: 10.11959/j.issn.2096-8930.2021046.
Siqi TANG, Zhisong PAN, Guyu HU, et al. Intelligent Satellite Internet Maintenance and Management:Progress and Opportunities[J]. Space-integrated-ground information networks, 2021, 2(4): 75-83. DOI: 10.11959/j.issn.2096-8930.2021046.
在多层异构的卫星互联网中,时变的网络拓扑、动态的链路质量、不稳定的卫星节点、海量涌现的高维数据给网络的运维与管理带来巨大挑战。人工智能技术由于具备从海量历史数据中学习或从与动态环境的交互反馈中学习的能力,被认为是应对上述挑战的有效方案。在网络资源管理、业务流量管理和网络状态管理3个方面重点调研人工智能技术在卫星网络运维与管理领域的研究现状,在此基础上深入分析现有方法存在的不足,并讨论未来值得关注的研究方向。
In multi-layer heterogeneous satellite internet
the time-varying topology
dynamic channel quality
unstable satellites and emerging high-dimensional data present daunting challenges to its maintenance and management system.Thanks to its ability to learn from massive historical data or interaction with dynamic environment
artificial intelligence has been considered to be a promising solution to meet the aforementioned challenge.In this paper
we reviewed the research status of intelligent satellite internet maintenance and management technology on the following three aspects
network resource management
traff c fl ow management and network state management.Based on the above introduction
we further discussed the limitation of existing research and discussed promising future research direction of this fi eld as well.
吴巍 . 天地一体化信息网络发展综述 [J ] . 天地一体化信息网络 , 2020 , 1 ( 1 ): 1 - 16 .
WU W . Survey on the development of space-integrated-ground information network [J ] . Space-Integrated-Ground Information Networks , 2020 ( 1 ): 1 - 16 .
周笛 , 盛敏 , 郝琪 , 等 . 巨型星座系统的网络运维与资源管控技术 [J ] . 天地一体化信息网络 , 2020 , 1 ( 1 ): 26 - 35 .
ZHOU D , SHENG M , HAO Q , et al . Network operation,maintenance and resource management in mega constellation SystemFull text replacement [J ] . Space-Integrated-Ground Information Networks , 2020 , 1 ( 1 ): 26 - 35 .
LIU S J , HU X , WANG W D . Deep reinforcement learning based dynamic channel allocation algorithm in multi-beam satellite systems [J ] . IEEE Access , 2018 , 6 : 15733 - 15742 .
HU X , LIAO X L , LIU Z J , et al . Multi-agent deep reinforcement learning-based flexible satellite payload for mobile terminals [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 9 ): 9849 - 9865 .
HU X , LIU S J , WANG Y P , et al . Deep reinforcement learningbased beam Hopping algorithm in multibeam satellite systems [J ] . IET Communications , 2019 , 13 ( 16 ): 2485 - 2491 .
QIU C , YAO H P , YU F R , et al . Deep Q-learning aided networking,caching,and computing resources allocation in software-defined satellite-terrestrial networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 6 ): 5871 - 5883 .
ZHOU C H , WU W , HE H L , et al . Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 2 ): 911 - 925 .
FERREIRA P V R , PAFFENROTH R , WYGLINSKI A M , et al . Reinforcement learning for satellite communications:from LEO to deep space operations [J ] . IEEE Communications Magazine , 2019 , 57 ( 5 ): 70 - 75 .
魏伍 , 张更新 , 吕晶 , 等 . 一种用于卫星互联网的业务预测方法 [J ] . 通信技术 , 2015 , 48 ( 11 ): 1285 - 1289 .
WEI W , ZHANG G X , LYU J , et al . Traffc prediction method for satellite network [J ] . Communications Technology , 2015 , 48 ( 11 ): 1285 - 1289 .
潘成胜 , 王羽夫 , 杨力 . 基于改进LSTM算法的天地一体化信息网络流量预测 [J ] . 天地一体化信息网络 , 2020 , 1 ( 2 ): 57 - 65 .
PAN C S , WANG Y F , YANG L . Traffic prediction of spaceintegrated-ground information network based on improved LSTM algorithm [J ] . Space-Integrated-Ground Information Networks , 2020 , 1 ( 2 ): 57 - 65 .
LI N , HU L , DENG Z L , et al . Research on GRU neural network satellite traffc prediction based on transfer learning [J ] . Wireless Personal Communications , 2021 , 118 ( 1 ): 815 - 827 .
YANG L , GU X X , SHI H F . A noval satellite network traffic prediction method based on GCN-GRU [C ] // Proceedings of 2020 International Conference on Wireless Communications and Signal Processing (WCSP) . Piscataway:IEEE Press , 2020 : 718 - 723 .
YANG T T , LI J B , FENG H L , et al . A novel transmission scheduling based on deep reinforcement learning in softwaredefined maritime communication networks [J ] . IEEE Transactions on Cognitive Communications and Networking , 2019 , 5 ( 4 ): 1155 - 1166 .
QIN Z Y , YAO H P , MAI T L . Traffic optimization in satellites communications:a multi-agent reinforcement learning approach [C ] // Proceedings of 2020 International Wireless Communications and Mobile Computing (IWCMC) . Piscataway:IEEE Press , 2020 : 269 - 273 .
YAIRI T , TAKEISHI N , ODA T , et al . A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2017 , 53 ( 3 ): 1384 - 1401 .
PAN D W , SONG Z , NIE L Q , et al . Satellite telemetry data anomaly detection using Bi-LSTM prediction based model [C ] // Proceedings of 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) . Piscataway:IEEE Press , 2020 : 1 - 6 .
TARIQ S , LEE S , SHIN Y , et al . Detecting anomalies in space using multivariate convolutional LSTM with mixtures of probabilistic PCA [C ] // Proceedings of Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery& Data Mining . New York:ACM , 2019 : 2123 - 2133 .
张克明 , 蔡远文 , 任元 . 基于生成对抗网络的航天异常事件检测方法 [J ] . 北京航空航天大学学报 , 2019 , 45 ( 7 ): 1329 - 1336 .
ZHANG K M , CAI Y W , REN Y . Space anomaly events detection approach based on generative adversarial nets [J ] . Journal of Beijing University of Aeronautics and Astronautics , 2019 , 45 ( 7 ): 1329 - 1336 .
董彦磊 , 汪春霆 , 周萌 . AHP-BP卫星通信网评估算法应用研究 [J ] . 无线电工程 , 2016 , 46 ( 8 ): 9 - 13 .
DONG Y L , WANG C T , ZHOU M . Research on application of AHP-BP evaluation algorithm for satellite communication network [J ] . Radio Engineering , 2016 , 46 ( 8 ): 9 - 13 .
CHENG S C , GAO Y , CAO J , et al . Lecture notes in electrical engineering [M ] . Singapore : Springer Singapore , 2020 .
裴忠民 , 任林涛 , 熊伟 , 等 . 基于社团结构的天基信息网络结构设计构想与仿真 [J ] . 天地一体化信息网络 , 2020 , 1 ( 2 ): 81 - 86 .
PEI Z M , REN L T , XIONG W , et al . Design conception and simulation of space information network structure based on community structure [J ] . Space-Integrated-Ground Information Networks , 2020 , 1 ( 2 ): 81 - 86 .
严佳洁 , 祖家琛 , 胡谷雨 , 等 . 面向异构通信卫星的地球站组网规划方法 [J ] . 计算机科学 , 2021 , 48 ( 3 ): 275 - 280 .
YAN J J , ZU J C , HU G Y , et al . Earth station network planning method for heterogeneous communication satellites [J ] . Computer Science , 2021 , 48 ( 3 ): 275 - 280 .
0
浏览量
1596
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构