浏览全部资源
扫码关注微信
1. 国防科技大学第六十三研究所,江苏 南京 210007
2. 陆军工程大学通信工程学院,江苏 南京 210007
[ "韩晨(1993-),男,博士,国防科技大学第六十三研究所工程师,主要研究方向为天地一体化信息网络、通信抗干扰" ]
[ "刘爱军(1970-),男,博士,陆军工程大学通信工程学院教授,主要研究方向为卫星通信、信号处理" ]
[ "安康(1989-),男,博士,国防科技大学第六十三研究所高级工程师,主要研究方向为天地一体化信息网络、智能超表面、通信抗干扰" ]
网络出版日期:2022-03,
纸质出版日期:2022-03-20
移动端阅览
韩晨, 刘爱军, 安康. 卫星互联网抗干扰策略研究展望[J]. 天地一体化信息网络, 2022,3(1):50-55.
Chen HAN, Aijun LIU, Kang AN. Research Prospect of Anti-Jamming Strategy for the Satellite Internet[J]. Space-integrated-ground information networks, 2022, 3(1): 50-55.
韩晨, 刘爱军, 安康. 卫星互联网抗干扰策略研究展望[J]. 天地一体化信息网络, 2022,3(1):50-55. DOI: 10.11959/j.issn.2096-8930.2022007.
Chen HAN, Aijun LIU, Kang AN. Research Prospect of Anti-Jamming Strategy for the Satellite Internet[J]. Space-integrated-ground information networks, 2022, 3(1): 50-55. DOI: 10.11959/j.issn.2096-8930.2022007.
卫星互联网作为国家信息化建设的重要基础设施,对维护国家安全具有重要意义。在干扰环境中,卫星互联网仍需保证其数据传输的有效性和可靠性。智能化新型干扰的威胁以及经典链路级抗干扰手段的局限性催生了智能化、网络化抗干扰的新需求。针对卫星互联网的结构特点和现代通信干扰技术的发展趋势,探析智能化、网络化抗干扰的基本架构。智能化抗干扰基于“感知—学习—预测—决策—反馈”的逻辑闭环,进行主动抗干扰决策,以实现自配置和自优化。网络化抗干扰通过各节点之间的协作通信,以拓扑控制重建链路、邻近节点资源重配置、业务流量负载均衡等方式提高网络化抗干扰水平,为构建跨层联合、多域结合、自主智能的抗干扰策略体系提供一定技术支撑。
As an important infrastructure of the national information system
the satellite internet is of great signifi cance to the national security.Thus
it needs to ensure the validity and reliability of the data transmission in the hostile jamming environment.The threat of smart jamming and the limitation of classical link-layer anti-jamming methods give rise to the new demand of intelligent and networked antijamming solutions.In view of the structural characteristics of the satellite internet and the development trend of modern communication jamming technologies
this paper analyzed the basic architecture of intelligent and networked anti-jamming.Based on the closed-loop strategic of sense-learn-prediction-decision-feedback
intelligent and active anti-jamming decision was made to realized self-confi guration and self-optimization.Based on the cooperative communication between nodes
networked anti-jamming ability was improved by the means of topology control and reconstruction
adjacent resources reallocation
and traffi c load balancing.It provided certain theoretical support for the construction of anti-jamming strategy system to achieved the cross-layer optimization
multi-domain combination
and adaptive intelligence.
中国联通 . 空天地一体化通信网络白皮书 [Z ] . 2020 .
China Unicom . White paper on air-space-ground integrated communication network [Z ] . 2020 .
张更新 , 丁晓进 , 曲至诚 . 天地一体化物联网体系架构及干扰分析研究 [J ] . 天地一体化信息网络 , 2020 , 1 ( 2 ): 22 - 33 .
ZHANG G X , DING X J , QU Z C . Research on space-based integrated Internet of Things architecture and interference analysis [J ] . Space-Integrated-Ground Information Networks , 2020 , 1 ( 2 ): 22 - 33 .
张晓凯 , 郭道省 , 张邦宁 . 空天地一体化网络研究现状与新技术的应用展望 [J ] . 天地一体化信息网络 , 2021 , 2 ( 4 ): 19 - 26 .
ZHANG X K , GUO D X , ZHANG B N . Research status of spaceair-ground integrated network and application prospects of new technologies [J ] . Space-Integrated-Ground Information Networks , 2021 , 2 ( 4 ): 19 - 26 .
姚富强 . 通信抗干扰工程与实践 [M ] . 北京 : 电子工业出版社 , 2012 .
YAO F Q . Communication anti-jamming engineering and practice [M ] . Beijing : Electronic Industry Press , 2012 .
HAN C , NIU Y . Multi-regional anti-jamming communication scheme based on transfer learning and Q learning [J ] . KSII Transactions on Internet and Information Systems , 2019 , 13 ( 7 ): 3333 - 3350 .
HASSAN M M , ABDULLAH-AL-WADUD M , ALMOGREN A , et al . Energy-aware resource and revenue management in federated cloud:a game-theoretic approach [J ] . IEEE Systems Journal , 2017 , 11 ( 2 ): 951 - 961 .
GAO N , QIN Z J , JING X J , et al . Anti-intelligent UAV jamming strategy via deep Q-networks [J ] . IEEE Transactions on Communications , 2020 , 68 ( 1 ): 569 - 581 .
TANG F X , FADLULLAH Z M , KATO N , et al . AC-POCA:anti coordination game based partially overlapping channels assignment in combined UAV and D2D-based networks [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 2 ): 1672 - 1683 .
HAN C , NIU Y T . Cross-layer anti-jamming scheme:a hierarchical learning approach [J ] . IEEE Access , 2018 , 6 : 34874 - 34883 .
YANG H J , SHI M , XIA Y Q , et al . Security research on wireless networked control systems subject to jamming attacks [J ] . IEEE Transactions on Cybernetics , 2019 , 49 ( 6 ): 2022 - 2031 .
FENG Z B , REN G C , CHEN J , et al . Power control in relayassisted anti-jamming systems:a Bayesian three-layer stackelberg game approach [J ] . IEEE Access , 2019 , 7 : 14623 - 14636 .
JIA L L , XU Y H , SUN Y M , et al . A game-theoretic learning approach for anti-jamming dynamic spectrum access in dense wireless networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 2 ): 1646 - 1656 .
ZHANG Y L , XU Y H , XU Y T , et al . A multi-leader one-follower stackelberg game approach for cooperative anti-jamming:no pains,no gains [J ] . IEEE Communications Letters , 2018 , 22 ( 8 ): 1680 - 1683 .
ZHANG L Y , GUAN Z Y , MELODIA T . United against the enemy:anti-jamming based on cross-layer cooperation in wireless networks [J ] . IEEE Transactions on Wireless Communications , 2016 , 15 ( 8 ): 5733 - 5747 .
WANG E K , CHEN C M , YIU S M , et al . Incentive evolutionary game model for opportunistic social networks [J ] . Future Generation Computer Systems , 2020 , 102 : 14 - 29 .
LIU X , XU Y H , JIA L L , et al . Anti-jamming communications using spectrum waterfall:a deep reinforcement learning approach [J ] . IEEE Communications Letters , 2018 , 22 ( 5 ): 998 - 1001 .
YAO F Q , JIA L L . A collaborative multi-agent reinforcement learning anti-jamming algorithm in wireless networks [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 4 ): 1024 - 1027 .
LI H T , LUO J W , LIU C J . Selfish bandit-based cognitive antijamming strategy for aeronautic swarm network in presence of multiple jammer [J ] . IEEE Access , 2019 , 7 : 30234 - 30243 .
PENG J L , ZHANG Z X , WU Q H , et al . Anti-jamming communications in UAV swarms:a reinforcement learning approach [J ] . IEEE Access , 2019 , 7 : 180532 - 180543 .
HAN C , HUO L Y , TONG X H , et al . Spatial anti-jamming scheme for Internet of satellites based on the deep reinforcement learning and stackelberg game [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 5 ): 5331 - 5342 .
韩晨 , 牛英滔 . 基于分层Q学习的联合抗干扰算法 [J ] . 计算机工程 , 2019 , 45 ( 5 ): 279 - 284 .
HAN C , NIU Y T . Joint anti-jamming algorithm based on hierarchical Q learning [J ] . Computer Engineering , 2019 , 45 ( 5 ): 279 - 284 .
ZIEBOLD R , MEDINA D , ROMANOVAS M , et al . Performance characterization of GNSS/IMU/DVL integration under real maritime jamming conditions [J ] . Sensors (Basel,Switzerland) , 2018 , 18 ( 9 ): 2954 .
TOMÁŠ M , PAVEL P , PAVEL K . Study of the GNSS jamming in real environment [J ] . International Journal of Electronics and Telecommunications , 2019 , 65 ( 1 ): 65 - 70 .
王硕 , 赵梦 . 美国军事卫星通信系统应用机制研究 [J ] . 航天器工程 , 2018 , 27 ( 1 ): 110 - 115 .
WANG S , ZHAO M . Study on usage mechanism of USA milistary satellite communications system [J ] . Spacecraft Engineering , 2018 , 27 ( 1 ): 110 - 115 .
袁飞 , 文志信 , 王松松 . 美军EHF卫星通信系统 [J ] . 国防科技 , 2010 , 31 ( 6 ): 22 - 26 .
YUAN F , WEN Z X , WANG S S . EHF satellite communication system of the US army [J ] . National Defense Science &Technology , 2010 , 31 ( 6 ): 22 - 26 .
张美蓉 , 镐梦婷 , 王闯 , 等 . 高低轨卫星异构网络资源管控策略与技术研究 [J ] . 天地一体化信息网络 , 2021 , 2 ( 4 ): 67 - 74 .
ZHANG M R , HAO M T , WANG C , et al . Research on strategies and technologies for resource management and control of heterogeneous network of high and low orbit satellites [J ] . SpaceIntegrated-Ground Information Networks , 2021 , 2 ( 4 ): 67 - 74 .
DE SANCTIS M , CIANCA E , ARANITI G , et al . Satellite communications supporting Internet of remote things [J ] . IEEE Internet of Things Journal , 2016 , 3 ( 1 ): 113 - 123 .
KODHELI O , LAGUNAS E , MATURO N , et al . Satellite communications in the new space era:a survey and future challenges [J ] . IEEE Communications Surveys & Tutorials , 2020 , 23 ( 1 ): 70 - 109 .
TANG F X , FADLULLAH Z M , MAO B M , et al . An intelligent traffic load prediction-based adaptive channel assignment algorithm in SDN-IoT:a deep learning approach [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 6 ): 5141 - 5154 .
SHAFI M , MOLISCH A F , SMITH P J , et al . 5G:a tutorial overview of standards,trials,challenges,deployment,and practice [J ] . IEEE Journal on Selected Areas in Communications , 2017 , 35 ( 6 ): 1201 - 1221 .
0
浏览量
2056
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构