浏览全部资源
扫码关注微信
[ "孟贤(1979- ),华为技术有限公司高级工程师,主要研究方向为星地一体化网络仿真、低轨星座组网等" ]
[ "秦大力(1984- ),华为技术有限公司高级工程师,主要研究方向为卫星星座仿真平台、星地融合仿真平台等" ]
[ "汪宇(1990- ),华为技术有限公司高级工程师,主要研究方向为空间信息网络、卫星通信移动性管理、低轨星座组网等" ]
[ "孔垂丽(1990- ),华为技术有限公司高级工程师,主要研究方向为卫星波束管理、低轨卫星接入等" ]
[ "罗禾佳(1986- ),华为技术有限公司主任工程师,主要研究方向为卫星通信、信道编码、信号处理、多天线技术等" ]
[ "王俊(1976- )华为技术有限公司高级技术专家,主要研究方向为卫星通信、信道编码、无线通信、系统设计、人工智能等" ]
网络出版日期:2023-09,
纸质出版日期:2023-09-20
移动端阅览
孟贤, 秦大力, 汪宇, 等. 卫星星座网络容量密度评估[J]. 天地一体化信息网络, 2023,4(3):67-78.
Xian MENG, Dali QIN, Yu WANG, et al. Capacity Density Assessment of Satellite Constellation Network[J]. Space-integrated-ground information networks, 2023, 4(3): 67-78.
孟贤, 秦大力, 汪宇, 等. 卫星星座网络容量密度评估[J]. 天地一体化信息网络, 2023,4(3):67-78. DOI: 10.11959/j.issn.2096-8930.2023032.
Xian MENG, Dali QIN, Yu WANG, et al. Capacity Density Assessment of Satellite Constellation Network[J]. Space-integrated-ground information networks, 2023, 4(3): 67-78. DOI: 10.11959/j.issn.2096-8930.2023032.
采用传统分析方法在较低波束密度场景下会极大低估系统的吞吐能力,且无法揭示出高波束密度场景下出现的容量饱和现象。为了克服上述问题,提出一种全新的系统仿真方法,以对卫星网络及星地一体化网络的容量密度指标进行精确评估。基于此方法,首先,评估地球不同经纬度区域的容量密度,可以观察到,随着卫星运动,相同地区的容量密度变化较大,其最大最小容量密度的比值可达两倍;其次,可见性越高的地区通常具有更高的容量密度,高频场景下,气衰对容量密度的影响不可忽略;最后,针对星地融合系统,评估结果显示蜂窝覆盖和卫星覆盖的容量密度可以相差4个数量级。为了提升星座容量密度,尝试用提升最大点亮波束数和提升卫星规模两种技术路径。结果显示,在星座总波束相同的情况下,提升卫星规模时性能更优;但两种提升星座总波束数的方式都存在容量上界,且边际效应显著下降。为此,最后提出提高卫星天线增益的方案,仿真结果表明所提方案可以显著提升星座容量密度。
The traditional analytical method greatly underestimates the throughput capability of the system in low beam density scenario
and cannot reveal the capacity saturation phenomenon in high beam density scenario.To overcome the preceding problems
a new system simulation method was proposed to accurately evaluated the capacity density indicator of satellite constellation network and integrated satellite and terrestrial network
Based on this method
first
the capacity density of different longitude and latitude regions of the earth was evaluated.It could be observed that the capacity density of the same region varies greatly with the movement of the satellite
and the maximum capacity density was twice the minimum.Then
areas with higher visibility usually had higher capacity density.In high-frequency scenarios
the impact of atmospheric attenuation on capacity density could not be ignored.Finally
for the integrated satellite and terrestrial network
the evaluation results showed that the capacity density of cellular coverage and satellite coverage could differ by four orders of magnitude.In order to improved the capacity density of satellite constellation network
two technical paths were attempted: increasing the maximum number of illuminated beams and increasing the satellite scale.The results showed that the performance was better when the constellation scale was increased when the total beams of the constellation were the same.However
the two ways to increase the total number of beams in a constellation had an upper bound on capacity
and the marginal effect decreased significantly.Finally
a scheme to increase the gain of satellite antenna was proposed.The simulation results showed that the proposed scheme could significantly increase the capacity density of constellation.
AZARI M M , SOLANKI S , CHATZINOTAS S , et al . Evolution of non-terrestrial networks from 5G to 6G:a survey [J ] . IEEE Communications Surveys & Tutorials , 2022 , 24 ( 4 ): 2633 - 2672 .
KODHELI O , LAGUNAS E , MATURO N , et al . Satellite communications in the new space era:a survey and future challenges [J ] . IEEE Communications Surveys & Tutorials , 2021 , 23 ( 1 ): 70 - 109 .
LUO H J , SHI X L , CHEN Y , et al . 6G VLEO satellite networks [J ] . Communications of Huawei Research , 2022 , 2 : 34 - 45 .
3GPP . Study on new radio (NR) to support non terrestrial networks:TR 38.811 [S ] . 2018 .
PULTAROVA T , HOWELL E . Starlink satellites:everything you need to know about the controversial internet megaconstellation [EB ] . 2023 .
ITU-R . Minimum requirements related to technical performance for IMT-2020 radio interface:M.2410-0 [S ] . 2017 .
ITU-R . Guidelines for evaluation of radio interface technologies for IMT-2020:M.2412-0 [S ] . 2017 .
ITU-R . Vision,requirements and evaluation guidelines for satellite radio interface of IMT-2020:M.2514-0 [S ] . 2022 .
DEL PORTILLO I , CAMERON B G , CRAWLEY E F . A technical comparison of three low earth orbit satellite constellation systems to provide global broadband [J ] . Acta Astronautica , 2019 , 159 : 123 - 135 .
KOUROGIORGAS C , TARCHI D , UGOLINI A , et al . System capacity evaluation of DVB-S2X based medium earth orbit satellite network operating at Ka band [C ] // Proceedings of 2016 8th Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC) . Piscataway:IEEE Press , 2016 : 1 - 8 .
3GPP . Solutions for NR to support non-terrestrial networks (NTN):TR 38.821 [S ] . 2021 .
SEDIN J , FELTRIN L , LIN X Q . Throughput and capacity evaluation of 5G new radio non-terrestrial networks with LEO satellites [C ] // Proceedings of GLOBECOM 2020 - 2020 IEEE Global Communications Conference . Piscataway:IEEE Press , 2021 : 1 - 6 .
AMATETTI C , CONTI M , GUIDOTTI A , et al . NB-IoT random access procedure via NTN:system level performances [C ] // Proceedings of ICC 2022 - IEEE International Conference on Communications . Piscataway:IEEE Press , 2022 : 2381 - 2386 .
JUAN E , LAURIDSEN M , WIGARD J , et al . 5G new radio mobility performance in LEO-based non-terrestrial networks [C ] // Proceedings of 2020 IEEE Globecom Workshops . Piscataway:IEEE Press , 2021 : 1 - 6 .
CHOUGRANI H , KISSELEFF S , MARTINS W A , et al . NB-IoT random access for nonterrestrial networks:preamble detection and uplink synchronization [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 16 ): 14913 - 14927 .
KODHELI O , ASTRO A , QUEROL J , et al . Random access procedure over non-terrestrial networks:from theory to practice [J ] . IEEE Access , 2021 , 9 : 109130 - 109143 .
ANZALCHI J , COUCHMAN A , GABELLINI P , et al . Beam hopping in multi-beam broadband satellite systems:system simulation and performance comparison with non-hopped systems [C ] // Proceedings of 2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop . Piscataway:IEEE Press , 2010 : 248 - 255 .
LIN Z Y , NI Z Y , KUANGLL , et al . Dynamic beam pattern and bandwidth allocation based on multi-agent deep reinforcement learning for beam hopping satellite systems [J ] . IEEE Transactionson Vehicular Technology , 2022 , 71 ( 4 ): 3917 - 3930 .
WANG Y , CHEN Y , QIAO Y F , et al . Cooperative beam hopping for accurate positioning in ultra-dense LEO satellite networks [C ] // Proceedings of 2021 IEEE International Conference on Communications Workshops . Piscataway:IEEE Press , 2021 : 1 - 6 .
SORMUNEN L , PUTTONEN J , KURJENNIEMI J . System level modeling of beam hopping for multi-spot beam satellite systems [C ] // 23rd Ka and Broadband Communications Conference,October 16 through 19th .[S.l:s.n ] , 2017 .
ZHANG J W , QIN D L , KONG C L , et al . System-level evaluation of beam hopping in NR-based LEO satellite communication system [C ] // Proceedings of 2023 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2023 : 1 - 6 .
SHENG M , ZHOU D , BAI W G , et al . 6G service coverage with mega satellite constellations [J ] . China Communications , 2022 , 19 ( 1 ): 64 - 76 .
CHENG N , QUAN W , SHI W S , et al . A comprehensive simulation platform for space-air-ground integrated network [J ] . IEEE Wireless Communications , 2020 , 27 ( 1 ): 178 - 185 .
SCHAUB H , ALFRIEND K T . J2 Invariant relative orbits for spacecraft formations [J ] . Celestial Mechanics and Dynamical Astronomy , 2001 , 79 : 77 - 95 .
PEKHTEREV S . The bandwidth of the Starlink constellation and the assessment of its potential subscriber base in USA [J ] . SatMagazine , 2021 , 11 : 54 - 57 .
Space Exploration Holdings,LLC . Request for modification of the authorization for the SpaceX NGSO satellite system,IBFS File No.SAT-MOD-20200417-00037 [Z ] . 2020 .
0
浏览量
246
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构