浏览全部资源
扫码关注微信
1. 北京理工大学,北京 100081
2. 陆军装甲兵学院士官学校,吉林 长春 130000
3. 北京雁栖湖应用数学研究院,北京 101408
[ "方嘉睿(2001− ),男,北京理工大学硕士生,主要研究方向为天地融合网络、智能组网" ]
[ "张婷婷(1989− ),女,北京理工大学预聘助理研究员,主要研究方向为天地融合网络、软件定义网络、网络功能虚拟化、智能组网" ]
[ "赵禹博(1992− ),男,陆军装甲兵学院士官学校助教,主要研究方向为未来网络发展体系、网络技术融合" ]
[ "武楠(1981− ),男,北京理工大学教授,主要研究方向为天地融合网络、未来网络体系架构、智能组网技术" ]
[ "梁蓓(1985− ),女,北京雁栖湖应用数学研究院助理研究员,主要研究方向为网络安全、可靠传输等" ]
网络出版日期:2024-03,
纸质出版日期:2024-03-20
移动端阅览
方嘉睿, 张婷婷, 赵禹博, 等. 面向天地融合网络的虚拟网络映射算法[J]. 天地一体化信息网络, 2024,5(1):14-23.
Jiarui FANG, Tingting ZHANG, Yubo ZHAO, et al. Virtual Network Embedding Algorithms for Integrated Space-Terrestrial Network[J]. Space-integrated-ground information networks, 2024, 5(1): 14-23.
方嘉睿, 张婷婷, 赵禹博, 等. 面向天地融合网络的虚拟网络映射算法[J]. 天地一体化信息网络, 2024,5(1):14-23. DOI: 10.11959/j.issn.2096-8930.2024002.
Jiarui FANG, Tingting ZHANG, Yubo ZHAO, et al. Virtual Network Embedding Algorithms for Integrated Space-Terrestrial Network[J]. Space-integrated-ground information networks, 2024, 5(1): 14-23. DOI: 10.11959/j.issn.2096-8930.2024002.
针对复杂的天地融合网络环境下,用户业务高差异、异质资源强受限、时空尺度大跨越、网络拓扑高动态等特性,给虚拟网络映射(Virtual Network Embedding,VNE)算法带来的挑战,国内外学者展开了深入研究。首先根据问题特性概述天地融合网络 VNE 面临的三大核心挑战;然后从场景建模和求解算法两大维度详细分析相关研究的进展,主要涵盖服务质量感知VNE、多层跨域异构网络VNE、动态VNE以及VNE问题求解算法4个方面,并从理论和实践两个方面深入分析应对天地融合网络VNE的解决策略;最后展望未来研究方向,旨在为后续工作提供参考。
Within the intricate environment of integrated space-terrestrial network
VNE algorithms face novel challenges due to the high variability in user demands
stringent limitations of heterogeneous resources
expansive spatiotemporal scales
and the dynamic nature of network topologies.In light of this
scholars worldwide have delved deeply into the VNE issues pertaining to these networks.This review firstly summarized the three core challenges faced by VNE in these networks based on their characteristics.It then elucidated the current state of research from two major perspectives: scenario modeling and algorithmic solutions
primarily encompassing Quality of Service (QoS) aware VNE
multi-layer cross-domain heterogeneous network VNE
dynamic VNE
and problem-solving algorithms for VNE.Both theoretical and practical strategies to address the VNE challenges in integrated space-terrestrial networks were analyzed in depth.Finally
it provided a foresight into future research directions
aim to offer valuable insights for subsequent studies.
XU M R , NIYATO D , XIONG Z H , et al . Quantum-secured space-air-ground integrated networks:concept,framework,and case study [J ] . IEEE Wireless Communications , 2022 , 1 ( 1 ): 1 - 8 .
LIU J , HE X C , CHEN T J , et al . SN-VNE:a virtual network embedding algorithm for satellite networks [C ] // Proceedings of 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops) . Piscataway:IEEE Press , 2019 : 1 - 6 .
SHEN X M , GAO J , WU W , et al . Holistic network virtualization and pervasive network intelligence for 6G [J ] . IEEE Communications Surveys & Tutorials , 2022 , 24 ( 1 ): 1 - 30 .
ALHUSSEIN O , DO P T , YE Q , et al . A virtual network customization framework for multicast services in NFV-enabled core networks [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 6 ): 1025 - 1039 .
ZHANG Y S , LI C C , CHEN N , et al . Intelligent requests orchestration for microservice management based on blockchain in software defined networking:a security guarantee [C ] // Proceedings of 2022 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway:IEEE Press , 2022 : 254 - 259 .
ZHANG P Y , YAO H P , LIU Y J . Virtual network embedding based on computing,network,and storage resource constraints [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 5 ): 3298 - 3304 .
CAO H T , WU S C , AUJLA G S , et al . Dynamic embedding and quality of service-driven adjustment for cloud networks [J ] . IEEE Transactions on Industrial Informatics , 2020 , 16 ( 2 ): 1406 - 1416 .
LI M Y , CHEN C L , HUA C Q , et al . Intelligent latency-aware virtual network embedding for industrial wireless networks [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 5 ): 7484 - 7496 .
PHAM M , HOANG D B , CHACZKO Z . Congestion-aware and energy-aware virtual network embedding [J ] . IEEE/ACM Transactions on Networking , 2020 , 28 ( 1 ): 210 - 223 .
ZHANG P Y , WANG C , JIANG C X , et al . Resource management and security scheme of ICPSs and IoT based on VNE algorithm [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 22 ): 22071 - 22080 .
JIANG C X , ZHANG P Y . QoS-Aware virtual network embedding [M ] . Singapore : Springer , 2021 .
CHEN N , SHEN S G , DUAN Y X , et al . Non-euclidean graph-convolution virtual network embedding for space–air–ground integrated networks [J ] . Drones , 2023 , 7 ( 3 ): 165 .
CAO H T , SHEN S G , GUO Y A , et al . Resource allocation and orchestration of slicing services in softwarized space-aerial-ground integrated networks [C ] // Proceedings of 2023 International Wireless Communications and Mobile Computing (IWCMC) . Piscataway:IEEE Press , 2023 : 769 - 774 .
ZHANG P Y , ZHANG Y , KUMAR N , et al . Deep reinforcement learning algorithm for latency-oriented IIoT resource orchestration [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 8 ): 7153 - 7163 .
ZHANG P Y , LI Y J , KUMAR N , et al . Distributed deep reinforcement learning assisted resource allocation algorithm for space-air-ground integrated networks [J ] . IEEE Transactions on Network and Service Management , 2022 , 1 ( 1 ): 1 - 1 .
ZHANG J W , JI Y F , SONG M , et al . Dynamic virtual network embedding over multilayer optical networks [J ] . Journal of Optical Communications and Networking , 2015 , 7 ( 9 ): 918 - 927 .
CHOWDHURY S R , AYOUBI S , AHMED R , et al . Multi-layer virtual network embedding [J ] . IEEE Transactions on Network and Service Management , 2018 , 15 ( 3 ): 1132 - 1145 .
ADDAD R A , BAGAA M , TALEB T , et al . Optimization model for cross-domain network slices in 5G networks [J ] . IEEE Transactions on Mobile Computing , 2020 , 19 ( 5 ): 1156 - 1169 .
MARINOVA S , LIN T , BANNAZADEH H , et al . End-to-end network slicing for future wireless in multi-region cloud platforms [J ] . Computer Networks , 2020 ,177:107298.
QUANG P T A , BRADAI A , SINGH K D , et al . Multi-domain non-cooperative VNF-FG embedding:a deep reinforcement learning approach [C ] // Proceedings of IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . Piscataway:IEEE Press , 2019 : 886 - 891 .
ZHANG P Y , WANG C , KUMAR N , et al . Space-air-ground integrated multi-domain network resource orchestration based on virtual network architecture:a DRL method [J ] . IEEE Transactions on Intelligent Transportation Systems , 2022 , 23 ( 3 ): 2798 - 2808 .
WANG G C , ZHOU S , ZHANG S , et al . SFC-based service provisioning for reconfigurable space-air-ground integrated networks [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 7 ): 1478 - 1489 .
NGUYEN H T , VU A V , NGUYEN D L , et al . A generalized resource allocation framework in support of multi-layer virtual network embedding based on SDN [J ] . Computer Networks , 2015 , 92 : 251 - 269 .
LU M L , GU Y , XIE D L . A dynamic and collaborative multi-layer virtual network embedding algorithm in SDN based on reinforcement learning [J ] . IEEE Transactions on Network and Service Management , 2020 , 17 ( 4 ): 2305 - 2317 .
ANDREOLETTI D , VELICHKOVA T , VERTICALE G , et al . A privacy-preserving reinforcement learning algorithm for multi-domain virtual network embedding [J ] . IEEE Transactions on Network and Service Management , 2020 , 17 ( 4 ): 2291 - 2304 .
ZHANG P Y , CHEN N , LI S B , et al . Multi-domain virtual network embedding algorithm based on horizontal federated learning [J ] . IEEE Transactions on Information Forensics and Security , 2023 , 18 : 3363 - 3375 .
NGUYEN L D , KIM N , KIM S , et al . RT-VNE:a real-time strategy for Virtual Network Embedding towards resource efficiency [C ] // Proceedings of 2017 International Conference on Information Networking (ICOIN) . Piscataway:IEEE Press , 2017 : 185 - 190 .
RUBIO-LOYOLA J , AGUILAR-FUSTER C , TOSCANO- PULIDO G , et al . Enhancing metaheuristic-based online embedding in network virtualization environments [J ] . IEEE Transactions on Network and Service Management , 2018 , 15 ( 1 ): 200 - 216 .
DEHURY C K , SAHOO P K . DYVINE:fitness-based dynamic virtual network embedding in cloud computing [J ] . IEEE Journal on Selected Areas in Communications , 2019 , 37 ( 5 ): 1029 - 1045 .
ZHANG P Y , WANG C , KUMAR N , et al . Dynamic virtual network embedding algorithm based on graph convolution neural network and reinforcement learning [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 12 ): 9389 - 9398 .
LI J L , SHI W S , WU H Q , et al . Cost-aware dynamic SFC mapping and scheduling in SDN/NFV-enabled space–air–ground- integrated networks for Internet of vehicles [J ] . IEEE Internet of Things Journal , 2022 , 9 ( 8 ): 5824 - 5838 .
LI J , LU H C , XUE K P , et al . Temporal netgrid model-based dynamic routing in large-scale small satellite networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 6 ): 6009 - 6021 .
MAITY I , VU T X , CHATZINOTAS S , et al . D-ViNE:dynamic virtual network embedding in non-terrestrial networks [C ] // Proceedings of 2022 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2022 : 166 - 171 .
CHOWDHURY M , RAHMAN M R , BOUTABA R . ViNEYard:virtual network embedding algorithms with coordinated node and link mapping [J ] . IEEE/ACM Transactions on Networking , 2012 , 20 ( 1 ): 206 - 219 .
YU M L , YI Y , REXFORD J , et al . Rethinking virtual network embedding:substrate support for path splitting and migration [J ] . ACM SIGCOMM Computer Communication Review , 2008 , 38 ( 2 ): 17 - 29 .
CHENG X , SU S , ZHANG Z B , et al . Virtual network embedding through topology-aware node ranking [J ] . ACM SIGCOMM Computer Communication Review , 2011 , 41 ( 2 ): 38 - 47 .
GONG L , WEN Y G , ZHU Z Q , et al . Toward profit-seeking virtual network embedding algorithm via global resource capacity [C ] // Proceedings of IEEE INFOCOM 2014 - IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2014 : 1 - 9 .
SONG A , CHEN W N , GU T L , et al . Distributed virtual network embedding system with historical archives and set-based particle swarm optimization [J ] . IEEE Transactions on Systems,Man,and Cybernetics:Systems , 2019 , 51 ( 2 ): 927 - 942 .
LI T X , ZHOU H C , LUO H B , et al . Service function chain in small satellite-based software defined satellite networks [J ] . China Communications , 2018 , 15 ( 3 ): 157 - 167 .
HAERI S , TRAJKOVIĆ L . Virtual network embedding via Monte Carlo tree search [J ] . IEEE Transactions on Cybernetics , 2018 , 48 ( 2 ): 510 - 521 .
BLENK A , KALMBACH P , ZERWAS J , et al . NeuroViNE:a neural preprocessor for your virtual network embedding algorithm [C ] // Proceedings of IEEE INFOCOM 2018 - IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2018 : 405 - 413 .
YAO H , CHEN X , LI M , et al . A novel reinforcement learning algorithm for virtual network embedding [J ] . Neurocomputing , 2018 , 284 : 1 - 9 .
HABIBI F , DOLATI M , KHONSARI A , et al . Accelerating virtual network embedding with graph neural networks [C ] // Proceedings of 2020 16th International Conference on Network and Service Management (CNSM) . Piscataway:IEEE Press , 2020 : 1 - 9 .
YAN Z X , GE J G , WU Y L , et al . Automatic virtual network embedding:a deep reinforcement learning approach with graph convolutional networks [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 6 ): 1040 - 1057 .
CHEN Q , MENG W X , HE C G . Graph-based resource allocation for air-ground integrated networks [J ] . Mobile Networks and Applications , 2022 , 27 ( 2 ): 492 - 501 .
ZHOU C H , WU W , HE H L , et al . Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 2 ): 911 - 925 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构