浏览全部资源
扫码关注微信
1. 卫星导航与移动通信融合技术工业和信息化部重点实验室,北京 100191
2. 北京航空航天大学前沿科学技术创新研究院,北京 100191
3. 北京航空航天大学电子信息工程学院, 北京 100191
[ "李桢(1989− ),男,助理研究员,主要研究方向为航天器轨道动力学、精密定轨、空间碎片等" ]
[ "施闯(1968− ),男,教授,博士生导师,主要研究方向为北斗/GNSS 高精度导航定位授时及其应用" ]
网络出版日期:2024-03,
纸质出版日期:2024-03-20
移动端阅览
李桢, 施闯. 大规模低轨星座的实时精密定轨技术[J]. 天地一体化信息网络, 2024,5(1):76-83.
Zhen LI, Chuang SHI. Realtime Precise Orbit Determination Technology for LEO Mega-Constellation[J]. Space-integrated-ground information networks, 2024, 5(1): 76-83.
李桢, 施闯. 大规模低轨星座的实时精密定轨技术[J]. 天地一体化信息网络, 2024,5(1):76-83. DOI: 10.11959/j.issn.2096-8930.2024008.
Zhen LI, Chuang SHI. Realtime Precise Orbit Determination Technology for LEO Mega-Constellation[J]. Space-integrated-ground information networks, 2024, 5(1): 76-83. DOI: 10.11959/j.issn.2096-8930.2024008.
在全球导航卫星系统的支撑下,分析地面集中解算和星上自主解算精密定轨的优缺点,并将高精度轨道非保守力模型应用于星上实时自主定轨算法,实现运动学和动力学定轨的分离,对于需要频繁机动的低轨卫星精密定轨具有显著优势。结果表明,辐射光压和大气阻力非保守力物理模型计算的加速度精度约5 nm/s
2
;采用广播星历进行定轨解算可以达到0.8 m位置精度,低轨卫星速度误差约1.1 mm/s;采用实时精密星历,位置精度可以达到8.0 cm,卫星速度精度约0.1 mm/s。低轨卫星实时精密定轨和预报方法可有效支撑大规模低轨星座的导航功能实现。
Supported by GNSS
it analyzed the advantages and disadvantages of solving LEO satellite orbit on the ground or onboard the satellites.The high-fidelity non-conservative force models were applied to the real-time orbit determination algorithm.To separate the kinematic and dynamic orbit determination process had been a great advantage for LEO satellites with much frequent orbital maneuvers.The test results showed that the accuracy of accelerations computed from the radiation pressure and atmospheric drag non-conservation force models were around 5 nm/s
2
.Use the broadcast ephemeris
the real-time orbit determination algorithm could get an accuracy of 0.8 m in the satellites′ positions and 1.1 mm/s accuracy in the satellites′ velocity.When the real-time precise ephemeris of GNSS satellites were provided
the algorithm could get an accuracy of 8 cm in the LEO satellites′ position and 0.1 mm/s in the velocity.The method for real-time orbit determination and orbit prediction in this paper could be used to support the construction of navigation system with the mega-constellations.
王建荣 , 杨元喜 , 胡燕 , 等 . 光学测绘卫星现状与发展趋势分析 [J ] . 武汉大学学报(信息科学版) , 2023 , 48 ( 3 ): 333 - 338 .
WANG J R , YANG Y X , HU Y , et al . Analysis on status quo and development trend of optical surveying and mapping satellites [J ] . Geomatics and Information Science of Wuhan University , 2023 , 48 ( 3 ): 333 - 338 .
BOCK H , JÄGGI A , ŠVEHLA D , et al . Precise orbit determination for the GOCE satellite using GPS [J ] . Advances in Space Research , 2007 , 39 ( 10 ): 1638 - 1647 .
WANG Y C , LI M , JIANG K C , et al . Precise orbit determination of the Haiyang 2C altimetry satellite using attitude modeling [J ] . GPS Solutions , 2022 , 26 ( 1 ): 1 - 14 .
KANG Z G , TAPLEY B , BETTADPUR S , et al . Precise orbit determination for the GRACE mission using only GPS data [J ] . Journal of Geodesy , 2006 , 80 ( 6 ): 322 - 331 .
ZHANG H Z , GU D F , JU B , et al . Precise orbit determination and maneuver assessment for TH-2 satellites using spaceborne GPS and BDS2 observations [J ] . Remote Sensing , 2021 , 13 ( 24 ): 1 - 17 .
SHAO K , WEI C B , GU D F , et al . Tsinghua scientific satellite precise orbit determination using onboard GNSS observations with antenna center modeling [J ] . Remote Sensing , 2022 , 14 ( 10 ): 1 - 17 .
PETER H , JÄGGI A , FERNÁNDEZ J , et al . Sentinel-1A–First precise orbit determination results [J ] . Advances in Space Research , 2017 , 60 ( 5 ): 879 - 892 .
LUO P , JIN S G , SHI Q Q . Undifferenced kinematic precise orbit determination of swarm and GRACE-FO satellites from GNSS observations [J ] . Sensors , 2022 , 22 ( 3 ).
张浩哲 , 常晓涛 , 朱广彬 , 等 . 资源三号03星星载GPS精密定轨与精度评价 [J ] . 测绘科学 , 2022 , 47 ( 6 ): 38 - 43 .
ZHANG H Z , CHANG X T , ZHU G B , et al . Precise orbit determination and accuracy evaluation of GPS onboard Resource 03 satellite [J ] . Science of Surveying and Mapping , 2022 , 47 ( 6 ): 38 - 43 .
JIN B , LI Y , JIANG K , et al . GRACE-FO antenna phase center modeling and precise orbit determination with single receiver ambiguity resolution [J ] . Remote Sensing , 2021 , 13 ( 21 ).
KANG Z , BETTADPUR S , NAGEL P , et al . GRACE-FO precise orbit determination and gravity recovery [J ] . Journal of Geodesy , 2020 , 94 ( 9 ).
MONTENBRUCK O , HACKEL S , WERMUTH M , et al . Sentinel-6A precise orbit determination using a combined GPS/Galileo receiver [J ] . Journal of Geodesy , 2021 , 95 ( 9 ).
LI X X . Precise orbit determination for the FY-3C satellite using onboard BDS and GPS observations from 2013,2015,and 2017 [J ] . Engineering , 2020 , 6 ( 8 ): 904 - 912 .
MAO X Y , ARNOLD D , GIRARDIN V , et al . Dynamic GPS-based LEO orbit determination with 1cm precision using the Bernese GNSS software [J ] . Advances in Space Research , 2021 , 67 ( 2 ): 788 - 805 .
WANG F H , GONG X W , SANG J Z , et al . A novel method for precise onboard real-time orbit determination with a standalone GPS receiver [J ] . Sensors , 2015 , 15 ( 12 ): 30403 - 30418 .
ALLAHVIRDI-ZADEH A , WANG K , EL-MOWAFY A . POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections [J ] . GPS Solutions , 2021 , 25 ( 2 ).
WANG Z Y , LI Z S , WANG L , et al . Comparison of the real-time precise orbit determination for LEO between kinematic and reduced-dynamic modes [J ] . Measurement:Journal of the International Measurement Confederation , 2022 ,187.
LI Z . Space vehicle radiation pressure modelling:A demonstration on Galileo satellites in GNSS [EB ] . 2019 .
KENNEALLY P W , SCHAUB H . Fast spacecraft solar radiation pressure modeling by ray tracing on graphics processing unit [J ] . Advances in Space Research , 2020 , 65 ( 8 ): 1951 - 1964 .
MEHTA P M , MCLAUGHLIN C A , SUTTON E K . Drag coefficient modeling for grace using direct simulation Monte Carlo [J ] . Advances in Space Research , 2013 , 52 ( 12 ): 2035 - 2051 .
MEHTA P M , WALKER A , MCLAUGHLIN C A , et al . Comparing physical drag coefficients computed using different gas–surface interaction models [J ] . Journal of Spacecraft and Rockets , 2014 , 51 ( 3 ): 873 - 883 .
PRIETO D M , GRAZIANO B P , ROBERTS P C E . Spacecraft drag modelling [J ] . Progress in Aerospace Sciences , 2014 , 64 : 56 - 65 .
MAAT M . Satellite skin-force modelling for atmospheric drag calculations [J ] . Space Science Reviews , 2010 , 151 ( 1 ): 149 - 157 .
施闯 , 肖云 , 范磊 , 等 . 导航卫星辐射光压建模进展及发展趋势 [J ] . 航空学报 , 2022 , 43 ( 10 ): 381 - 394 .
SHI C , XIAO Y , FAN L , et al . Research progress of radiation pressure modelling for navigation satellites [J ] . Acta Aeronautica et Astronautica Sinica , 2022 , 43 ( 10 ): 381 - 394 .
LI Z , ZIEBART M , GREY S , et al . Earth radiation pressure modelling for Beidou IGSO satellites [C ] // Proceedings of the China Satellite Navigation Conference (CSNC) 2017 . Piscataway:IEEE Press , 2017 : 63 - 67 .
LI Z , ZIEBART M , BHATTARAI S , et al . Fast solar radiation pressure modelling with ray tracing and multiple reflections [J ] . Advances in Space Research , 2018 , 61 ( 9 ): 2352 - 2365 .
MAREK Z . High precision analytical solar radiation pressure modelling for GNSS spacecraft [D ] . London:University of East London , 2001 .
LI Z , ZIEBART M . Uncertainty analysis on direct solar radiation pressure modelling for GPS IIR and Galileo FOC satellites [J ] . Advances in Space Research , 2020 , 66 ( 4 ): 963 - 973 .
LI Z , ZIEBART M , BHATTARAI S , et al . A shadow function model based on perspective projection and atmospheric effect for satellites in eclipse [J ] . Advances in Space Research , 2019 , 63 ( 3 ): 1347 - 1359 .
MONTENBRUCK O , RAMOS-BOSCH P . Precision real-time navigation of LEO satellites using global positioning system measurements [J ] . GPS Solutions , 2008 , 12 ( 3 ): 187 - 198 .
HATTORI A , OTSUBO T . Time-varying solar radiation pressure on Ajisai in comparison with LAGEOS satellites [J ] . Advances in Space Research , 2019 , 63 ( 1 ): 63 - 72 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构