浏览全部资源
扫码关注微信
1. 北京航空航天大学前沿科学技术创新研究院, 北京 100191
2. 卫星导航与移动通信融合技术工业和信息化部重点实验室,北京 100191
[ "张雨露(1997− ),女,北京航空航天大学前沿科学技术创新研究院博士生,主要研究方向为低轨卫星高精度定轨与多普勒定位算法" ]
[ "李桢(1989− ),男,博士,北京航空航天大学前沿科学技术创新研究院助理研究员,主要研究方向为航天器辐射光压建模、精密定轨及空间碎片预警等" ]
[ "施闯(1968− ),男,博士,北京航空航天大学前沿科学技术创新研究院教授,主要从事北斗高精度定位导航授时等方面的科研、教学工作" ]
[ "景贵飞(1968− ),男,博士,北京航空航天大学前沿科学技术创新研究院研究员,主要从事北斗系统、导航与位置服务等方面的科研、教学工作" ]
网络出版日期:2024-03,
纸质出版日期:2024-03-20
移动端阅览
张雨露, 李桢, 施闯, 等. 大规模低轨星座多普勒定位算法[J]. 天地一体化信息网络, 2024,5(1):84-94.
Yulu ZHANG, Zhen LI, Chuang SHI, et al. Doppler Positioning Performance of LEO Mega Constellation[J]. Space-integrated-ground information networks, 2024, 5(1): 84-94.
张雨露, 李桢, 施闯, 等. 大规模低轨星座多普勒定位算法[J]. 天地一体化信息网络, 2024,5(1):84-94. DOI: 10.11959/j.issn.2096-8930.2024009.
Yulu ZHANG, Zhen LI, Chuang SHI, et al. Doppler Positioning Performance of LEO Mega Constellation[J]. Space-integrated-ground information networks, 2024, 5(1): 84-94. DOI: 10.11959/j.issn.2096-8930.2024009.
基于典型的Starlink星座构型,对大规模低轨星座多普勒定位算法展开研究。实验结果表明,理想条件下低轨星座多普勒单点定位精度可以在3~6 m。为保证米级的定位精度,低轨卫星的位置精度和速度精度应为米级每秒或厘米级每秒。C频段信号受到的电离层误差若不做改正,将导致定位精度变差2 m左右。对流层误差将使得定位结果变差几十米。此外,使用轨道高度为550 km的低轨卫星的多普勒频移定位时,接收机的初值误差应小于300 km,否则部分历元将不能收敛到正确的接收机位置。
This paper proposed a Doppler-only point-solution algorithm and analyzed the Doppler positioning performance based on the Starlink constellation.The Doppler positioning accuracy was about 3~6 m.To achieve the meter-level positioning accuracy
the satellite position and velocity errors should be within several meters and several centimeters per second
respectively.The ionospheric delay rates of C-band signal would cause about 2 m error in Doppler positioning.The positioning error would increase by dozens of meters if there were no corrections for the tropospheric errors.To ensure convergence in the LEO-based Doppler positioning
the initial receiver position error should be less than 300 km when the satellites orbit at an altitude of 550 km.
REID T G R , NEISH A M , WALTER T , et al . Broadband LEO constellations for navigation [J ] . Navigation , 2018 , 65 ( 2 ): 205 - 220 .
田润 , 崔志颖 , 张爽娜 , 等 . 基于低轨通信星座的导航增强技术发展概述 [J ] . 导航定位与授时 , 2021 , 8 ( 1 ): 66 - 81 .
TIAN R , CUI Z Y , ZHANG S N , et al . Overview of navigation augmentation technology based on LEO [J ] . Navigation Positioning and Timing , 2021 , 8 ( 1 ): 66 - 81 .
IANNUCCI P A , HUMPHREYS T E . Economical fused LEO GNSS [C ] // Proceedings of 2020 IEEE/ION Position,Location and Navigation Symposium (PLANS) . Piscataway:IEEE Press , 2020 : 426 - 443 .
蒙艳松 , 严涛 , 边朗 , 等 . 基于低轨互联网星座的全球导航增强:机遇与挑战 [J ] . 导航定位与授时 , 2022 , 9 ( 1 ): 12 - 24 .
MENG Y S , YAN T , BIAN L , et al . LEO broadband satellite constellations based global navigation augmentation:opportunity and challenge [J ] . Navigation Positioning and Timing , 2022 , 9 ( 1 ): 12 - 24 .
张雨露 , 范磊 , 刘江梅 , 等 . 商业低轨通信星座纳入国家综合PNT体系的可行性分析 [J ] . 导航定位学报 , 2022 , 10 ( 2 ): 26 - 36 .
ZHANG Y L , FAN L , LIU J M , et al . Feasibility analysis of commercial broadband LEO constellation incorporated into the national comprehensive PNT system [J ] . Journal of Navigation and Positioning , 2022 , 10 ( 2 ): 26 - 36 .
曾添 , 隋立芬 , 贾小林 , 等 . 小型化LEO星座与BDS-3全星座联合定轨仿真 [J ] . 武汉大学学报(信息科学版) , 2022 , 47 ( 1 ): 61 - 68 .
ZENG T , SUI L F , JIA X L , et al . Simulation of combined orbit determination with a small LEO constellation and BDS-3 full constellation [J ] . Geomatics and Information Science of Wuhan University , 2022 , 47 ( 1 ): 61 - 68 .
蒙艳松 , 边朗 , 王瑛 , 等 . 基于 “鸿雁” 星座的全球导航增强系统 [J ] . 国际太空 , 2018 ( 10 ): 20 - 27 .
MENG Y S , BIAN L , WANG Y , et al . Global navigation augmentation system based on hongyan satellite constellation [J ] . Space International , 2018 ( 10 ): 20 - 27 .
LI X X , MA F J , LI X , et al . LEO constellation-augmented multi-GNSS for rapid PPP convergence [J ] . Journal of Geodesy , 2019 , 93 ( 5 ): 749 - 764 .
LAWRENCE D , COBB H S , GUTT G , et al . Test results from a LEO-satellite-based assured time and location solution [C ] // Proceedings of the 2016 International Technical Meeting of The Institute of Navigation .[S.l.:s.n. ] , 2016 : 125 - 129 .
ORABI M , KHALIFE J , KASSAS Z M . Opportunistic navigation with Doppler measurements from iridium next and orbcomm LEO satellites [C ] // Proceedings of 2021 IEEE Aerospace Conference (50100) . Piscataway:IEEE Press , 2021 : 1 - 9 .
KERSHNER R B , NEWTON R R . The transit system [J ] . Journal of Navigation , 1962 , 15 ( 2 ): 129 - 144 .
ANDERLE R J . Accuracy of geodetic solutions based on Doppler measurements of the Navstar global positioning system satellites [J ] . Bulletin Géodésique , 1979 , 53 ( 2 ): 109 - 116 .
CHEN X , GAO W Y , WAN Y H . Revisiting the Doppler filter of LEO satellite GNSS receivers for precise velocity estimation [J ] . Journal of Electronics (China) , 2013 , 30 ( 2 ): 138 - 144 .
JAYLES C . DORIS/Jason-2:better than 10 cm on-board orbits available for Near-Real-Time Altimetry [J ] . Advances in Space Research , 2010 , 46 ( 12 ): 1497 - 1512 .
BENZERROUK H , NGUYEN Q , FANG X X , et al . LEO satellites based Doppler positioning using distributed nonlinear estimation [J ] . IFAC-PapersOnLine , 2019 , 52 ( 12 ): 496 - 501 .
TAN Z Z , QIN H L , CONG L , et al . New method for positioning using IRIDIUM satellite signals of opportunity [J ] . IEEE Access , 2019 , 7 : 83412 - 83423 .
NEINAVAIE M , KHALIFE J , KASSAS Z M . Blind Doppler tracking and beacon detection for opportunistic navigation with LEO satellite signals [C ] // Proceedings of 2021 IEEE Aerospace Conference (50100) . Piscataway:IEEE Press , 2021 : 1 - 8 .
KHALIFE J J , KASSAS Z M . Receiver design for Doppler positioning with Leo satellites [C ] // Proceedings of ICASSP 2019 - 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Piscataway:IEEE Press , 2019 : 5506 - 5510 .
FARHANGIAN F , LANDRY R J . Multi-constellation software-defined receiver for Doppler positioning with LEO satellites [J ] . Sensors , 2020 , 20 ( 20 ): 5866 .
NEINAVAIE M , KHALIFE J , KASSAS Z M . Acquisition,Doppler tracking,and positioning with starlink LEO satellites:first results [J ] . IEEE Transactions on Aerospace and Electronic Systems , 2022 , 58 ( 3 ): 2606 - 2610 .
VALLADO D , CRAWFORD P . SGP4 orbit determination [C ] // Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit . Reston,Virigina:AIAA , 2008 .
PSIAKI M L . Navigation using carrier Doppler shift from a LEO constellation:transit on steroids [J ] . NAVIGATION , 2021 , 68 ( 3 ): 621 - 641 .
BRAASCH M S , VAN DIERENDONCK A J . GPS receiver architectures and measurements [J ] . Proceedings of the IEEE , 1999 , 87 ( 1 ): 48 - 64 .
PETIT G , LUZUM B . IERS Conventions (2010) [S ] . IERS Technical Note No.36.Verlagdes Bundesamtsfür Kartographie und Geodäsie,Frankfurt am Main,Germany , 2010 .
GULKLETT M . Relativistic effects in GPS and LEO [D ] . Copenhagen:University of Copenhagen , 2003 .
MORALES-FERRE R , LOHAN E S , FALCO G , et al . GDOP-based analysis of suitability of LEO constellations for future satellite-based positioning [C ] // Proceedings of 2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE) . Piscataway:IEEE Press , 2020 : 147 - 152 .
WALKER J . Satellite constellations [J ] . Journal of the British Interplanetary Society , 1984 , 37 ( 12 ): 559 - 571 .
ZHANG Y , LI Z , SHI C , et al . Analysis of positioning performance and GDOP based on Starlink LEO constellation [C ] // China Satellite Navigation Conference .[S.l.:s.n. ] , 2022 .
STANDISH E . JPL planetary and lunar ephemerides,DE405/LE405,JPL Interoffice Memorandum IOM 312,F-98-048 [D ] . Los Angeles:Jet Propulsion Laboratory , 1998 .
REIGBER C , SCHMIDT R , FLECHTNER F , et al . An Earth gravity field model complete to degree and order 150 from GRACE:eigen-GRACE02S [J ] . Journal of Geodynamics , 2005 , 39 ( 1 ): 1 - 10 .
ZIEBART M . Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape [J ] . Journal of Spacecraft and Rockets , 2004 , 41 ( 5 ): 840 - 848 .
BERGER C , BIANCALE R , ILL M , et al . Improvement of the empirical thermospheric model DTM:DTM94 - a comparative review of various temporal variations and prospects in space geodesy applications [J ] . Journal of Geodesy , 1998 , 72 ( 3 ): 161 - 178 .
REID T G R , NEISH A M , WALTER T F , et al . Leveraging commercial broadband LEO constellations for navigation [C ] // The 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016) . Portland,Oregon:Institute of Navigation , 2016 : 2300 - 2314 .
TAVELLA P . Statistical and mathematical tools for atomic clocks [J ] . Metrologia , 2008 , 45 ( 6 ): S183 - S192 .
ARAGON-ANGEL A , ZÜRN M , ROVIRA-GARCIA A . Galileo ionospheric correction algorithm:an optimization study of NeQuick-G [J ] . Radio Science , 2019 , 54 ( 11 ): 1156 - 1169 .
JIANG M Y , QIN H L , ZHAO C , et al . LEO Doppler-aided GNSS position estimation [J ] . GPS Solutions , 2022 , 26 ( 1 ): 31 .
IRSIGLER M , HEIN G , EISSFELLER B , et al . Aspects of C-band satellite navigation:signal propagation and satellite signal tracking [C ] // Proc eedings of the European Navigation Conference ENC-GNSS2002 .[S.l.:s.n. ] , 2002 .
MA F J , ZHANG X H , HU J H , et al . Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution [J ] . GPS Solutions , 2022 , 26 ( 2 ): 53 .
YAN W , LI Z S , LI D H , et al . Evaluation of precise point positioning algorithm based on original dual-frequency GPS code and carrier-phase observations [C ] // Proceedings of 2011 International Conference on Electric Information and Control Engineering . Piscataway:IEEE Press , 2011 : 3244 - 3247 .
BOLLA P , BORRE K . Performance analysis of dual-frequency receiver using combinations of GPS L1,L5,and L2 civil signals [J ] . Journal of Geodesy , 2019 , 93 ( 3 ): 437 - 447 .
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构