浏览全部资源
扫码关注微信
1. 大连大学通信与网络重点实验室,辽宁 大连 116622
2. 南京信息工程大学,江苏 南京 210044
[ "潘成胜(1962-),男,大连大学通信与网络重点实验室教授,南京信息工程大学电子信息工程学院教授,主要研究方向为一体化网络系统与网络协议、一体化指挥系统的网络理论与技术。" ]
[ "王羽夫(1996-),男,大连大学通信与网络重点实验室研究生,主要研究方向为一体化智能网络流量预测技术。" ]
[ "杨力(1982-),女,大连大学通信与网络重点实验室负责人,主要研究方向为空间信息网络传输技术、无线通信网络协议理论与方法。" ]
网络出版日期:2020-12,
纸质出版日期:2020-12-20
移动端阅览
潘成胜, 王羽夫, 杨力. 基于改进LSTM算法的天地一体化信息网络流量预测[J]. 天地一体化信息网络, 2020,1(2):57-65.
Chengsheng PAN, Yufu WANG, Li YANG. Traffic Prediction of Space-Integrated-Ground Information Network Based on Improved LSTM Algorithm[J]. Space-integrated-ground information networks, 2020, 1(2): 57-65.
潘成胜, 王羽夫, 杨力. 基于改进LSTM算法的天地一体化信息网络流量预测[J]. 天地一体化信息网络, 2020,1(2):57-65. DOI: 10.11959/j.issn.2096-8930.20200208.
Chengsheng PAN, Yufu WANG, Li YANG. Traffic Prediction of Space-Integrated-Ground Information Network Based on Improved LSTM Algorithm[J]. Space-integrated-ground information networks, 2020, 1(2): 57-65. DOI: 10.11959/j.issn.2096-8930.20200208.
天地一体化信息网络由于存在流量突发性强、拓扑时变等问题使得通信易产生中断,流量波动不平稳导致其流量预测难度远高于地面网络。针对该问题,提出一种改进的LSTM算法,首先分析流量序列滞后变量对预测值的影响,判断流量自相关度;其次,采用以预测值代替中断的方式,消除训练集的噪声和断点;最后,使用Dropout算法减少了噪声和神经网络过拟合带来的影响,准确预测天地一体化信息网络流量数据。仿真实验表明,在OPNET仿真环境中,该算法相较于其他算法准确性提升了59.21%,算法训练速度提升了11.11%,能够为天地一体化信息网络统筹调度提供有效的数据支撑。
The space-integrated-ground information network is easy to interrupt and the traffi c fl uctuation is not stable due to the problems of high traffi c burst and topological time-varying
which makes the traffi c prediction diffi cult much higher than the ground.In order to solve this problem
an improved LSTM algorithm was put forward.Firstly
the traffi c autocorrelation was judged by analyzd the infl uence of the lag variable of traffi c sequence on the predicted value; Secondly
the noise and breakpoint of the training set were eliminated by replacing the interruption with the predicted value; Finally
Dropout algorithm was used to reduce the impact of noise and neural network over fi tting
and accurately predict the traffi c data of the integrated intelligent network.The simulation results showed that in OPNET simulation environment
compared with other algorithms
the accuracy of this algorithm was improved by 59.21%
and the training speed of the algorithm was improved by 11.11%
which could provide eff ective data support for the overall scheduling of the integrated intelligent network.
成艳 , 韩笑冬 , 陈亮亮 , 等 . 天地一体化信息网络参考模型及关键技术 [J ] . 空间电子技术 , 2017 ( 4 ): 39 - 42 + 47 .
CHENG Y , HAN X D , CHEN L L , et al . Function reference model and key technologies of space-integration ground information network [J ] . Space Electronic Technology , 2017 ( 4 ): 39 - 42 + 47 .
刘立祥 . 天地一体化信息网络 [M ] . 北京 : 科学出版社 , 2015 .
LIU L X . Space-and-ground integration network [M ] . Beijing : Science Press , 2015 .
林振荣 , 黎嘉诚 , 杨冬芹 , 等 . 改进微分进化和小波神经网络的网络流量预测 [J ] . 计算机工程与设计 , 2019 , 040 ( 12 ): 3413 - 3418 .
LIN Z R , LI J C , YANG D Q , et al . Network traffic prediction based on wavelet neural network with improved differential evolution algorithm [J ] . Computer Engineering and Design , 2019 , 040 ( 12 ): 3413 - 3418 .
LI M , WANG Y W , WANG Z W , et al . A deep learning method based on an attention mechanism for wireless network traffic prediction [J ] . Ad Hoc Networks , 2020 .
穆昌 . 基于小波变换和极限学习机的网络流量预测模型 [J ] . 微型电脑应用 , 2020 , 036 ( 1 ): 138 - 140 .
MU C . Network traffic prediction model based on wavelet transform and limit learning machine [J ] . Microcomputer Applications , 2020 , 036 ( 1 ): 138 - 140 .
FAN J , MU D , LIU Y . Research on network traffic prediction model based on neural network [C ] // 2019 2nd International Conference on Information Systems and Computer Aided Education(ICISCAE) . Piscataway: IEEE , 2019 : 554 - 557 .
ZHANG G , HUANG D . Short-term network traffic prediction with ACD and particle filter [C ] // 2013 5th International Conference on Intelligent Networking and Collaborative Systems . Piscataway:IEEE , 2013 : 189 - 191 .
LI Z , LEI Q , KOUYING X , et al . A novel BP neural network model for traffic prediction of next generation network [C ] // 2009 Fifth International Conference on Natural Computation . Piscataway:IEEE , 2009 : 32 - 38 .
KO T , RAZA S M , BINH D T , et al . Network prediction with traffic gradient classification using convolutional neural networks [C ] // 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM) . Piscataway:IEEE , 2020 : 1 - 4 .
MOHORCIC M , SVIGELJ A , KANDUS G , et al . Demographically weighted traffic flow models for adaptive routing in packet-switched non-geostationary satellite meshed networks [J ] . Computer Networks the International Journal of Computer &Telecommunications Networking , 2003 , 43 ( 2 ): 113 - 131 .
DONNER A , KISSLING C , HERMENIER R . Satellite constellation networks for aeronautical communication:Traffic modelling and link load analysis [J ] . Iet Communications , 2010 , 4 ( 13 ): 1594 - 1606 .
CHEN Q , . Traffic prediction based on surrogate model in satellite constellation networks [C ] // 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC) . Piscataway: IEEE , 2019 : 126 - 130 .
刑梦来 , 王硕 , 孙洋洋 . 深度学习框架PyTorch快速开发与实战 [M ] . 北京 : 电子工业出版社 , 2018 .
XING M L , WANG S , SUN Y Y . Rapid development and practice of deep learning framework PyTorch [M ] . Beijing : Publishing House of Electronics Industry , 2018 .
CHEN K , SONG X , HAN D , et al . Pedestrian behavior prediction model with a convolutional LSTM encoder-decoder [J ] . Physica A:Statal Mechanics and its Applications , 2020 : 125 - 132 .
SRIVASTAVA N , HINTON G E , KRIZHEVSKY A , et al . Dropout:a simple way to prevent neural networks from overfitting [J ] . Journal of Machine Learning Research , 2014 , 15 ( 1 ): 1929 - 1958 .
0
浏览量
796
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构