浏览全部资源
扫码关注微信
1. 东南大学移动通信国家重点实验室,江苏 南京 210096
2. 紫金山实验室,江苏 南京 211111
[ "李科新(1995-),男,东南大学移动通信国家重点实验室博士生,主要研究方向为大规模MIMO无线通信和卫星移动通信" ]
[ "尤力(1987-),男,东南大学移动通信国家重点实验室副研究员,主要研究方向为大规模MIMO无线通信和卫星移动通信" ]
[ "高西奇(1967-),男,东南大学首席教授,移动通信国家重点实验室副主任,主要研究方向为大规模MIMO无线通信、卫星移动通信、光无线通信、移动通信信号处理等" ]
网络出版日期:2022-03,
纸质出版日期:2022-03-20
移动端阅览
李科新, 尤力, 高西奇. 基于大规模MIMO的低轨卫星通信系统[J]. 天地一体化信息网络, 2022,3(1):2-8.
Kexin LI, Li YOU, Xiqi GAO. Massive MIMO LEO Satellite Communications System[J]. Space-integrated-ground information networks, 2022, 3(1): 2-8.
李科新, 尤力, 高西奇. 基于大规模MIMO的低轨卫星通信系统[J]. 天地一体化信息网络, 2022,3(1):2-8. DOI: 10.11959/j.issn.2096-8930.2022001.
Kexin LI, Li YOU, Xiqi GAO. Massive MIMO LEO Satellite Communications System[J]. Space-integrated-ground information networks, 2022, 3(1): 2-8. DOI: 10.11959/j.issn.2096-8930.2022001.
将大规模多输入多输出(MIMO)技术拓展应用于低地球轨道(低轨)卫星通信系统,使得卫星具备实施灵活波束成形的能力,这样能够充分利用大规模MIMO的空间自由度,显著提高LEO卫星通信系统的频谱效率和功率效率。对基于大规模MIMO的LEO卫星通信系统中的若干相关问题进行研究,分析大规模MIMO LEO卫星信道的特性,并揭示其与地面无线信道的重要区别。针对大规模MIMO LEO卫星通信中的信道信息获取、多用户传输和用户调度等问题,讨论当前工作面临的主要困难,并探讨如何利用大规模MIMO LEO卫星信道特性针对性地设计具有较低实现复杂度的解决方案。
Extending massive multiple-input multiple-output (MIMO) technique to low earth orbit (LEO) satellite communication systems enables satellites to implement fl exible beamforming
which can make full use of the spatial degrees of freedom of massive MIMO and signifi cantly improve the spectral effi ciency and energy effi ciency of LEO satellite communication systems.Several related issues in massive MIMO-based LEO satellite communication systems were studied.The characteristics of massive MIMO LEO satellite channels were analyzed.The important diff erences between them and terrestrial wireless channels were revealed.With the aim of addressing the problems on channel information acquisition
multi-user transmission and user scheduling in massive MIMO LEO satellite communication
the main difficulties faced by the current work were discussed
and how to use the characteristics of massive MIMO LEO satellite channels to design tailored solutions with low implement complexity was conceived.
GUIDOTTI A , VANELLI-CORALLI A ,, CONTI M , et al . Architectures and key technical challenges for 5G systems incorporating satellites [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 3 ): 2624 - 2639 .
3GPP TR 38.811 . Study on new radio (NR) to support nonterrestrial networks (Release 15) [S ] . 2020 .
DI B Y , SONG L Y , LI Y H , et al . Ultra-dense LEO:integration of satellite access networks into 5G and beyond [J ] . IEEE Wireless Communications , 2019 , 26 ( 2 ): 62 - 69 .
SU Y T , LIU Y Q , ZHOU Y Q , et al . Broadband LEO satellite communications:architectures and key technologies [J ] . IEEE Wireless Communications , 2019 , 26 ( 2 ): 55 - 61 .
FOSSA C E , RAINES R A , GUNSCH G H , et al . An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system [C ] // Proceedings of the IEEE 1998 National Aerospace and Electronics Conference . Piscataway:IEEE Press , 1998 : 152 - 159 .
DEL PORTILLO I , CAMERON B G , CRAWLEY E F . A technical comparison of three low earth orbit satellite constellation systems to provide global broadband [J ] . Acta Astronautica , 2019 , 159 : 123 - 135 .
MARAL G , BOUSQUET M , SUN Z L . Satellite communications systems [M ] . Chichester : Wiley , 2020 .
LUTZ E , WERNER M , JAHN A . Satellite systems for personal and broadband communications [M ] . Heidelberg : Springer , 2000 .
HONG W , JIANG Z H , YU C , et al . Multibeam antenna technologies for 5G wireless communications [J ] . IEEE Transactions on Antennas and Propagation , 2017 , 65 ( 12 ): 62316249 .
VÁZQUEZ M Á , PÉREZ-NEIRA A , CHRISTOPOULOS D , et al . Precoding in multibeam satellite communications:present and future challenges [J ] . IEEE Wireless Communications , 2016 , 23 ( 6 ): 88 - 95 .
PEREZ-NEIRA A I , VAZQUEZ M A , SHANKAR M R B , et al . Signal processing for high-throughput satellites:challenges in new interference-limited scenarios [J ] . IEEE Signal Processing Magazine , 2019 , 36 ( 4 ): 112 - 131 .
ZHENG G , CHATZINOTAS S , OTTERSTEN B . Generic optimization of linear precoding in multibeam satellite systems [J ] . IEEE Transactions on Wireless Communications , 2012 , 11 ( 6 ): 2308 - 2320 .
CHRISTOPOULOS D , CHATZINOTAS S , OTTERSTEN B . Multicast multigroup precoding and user scheduling for framebased satellite communications [J ] . IEEE Transactions on Wireless Communications , 2015 , 14 ( 9 ): 4695 - 4707 .
WANG W J , LIU A , ZHANG Q , et al . Robust multigroup multicast transmission for frame-based multi-beam satellite systems [J ] . IEEE Access , 2018 , 6 : 46074 - 46083 .
SCHWARZ R T , DELAMOTTE T , STOREK K U , et al . MIMO applications for multibeam satellites [J ] . IEEE Transactions on Broadcasting , 2019 , 65 ( 4 ): 664 - 681 .
MARZETTA T L . Noncooperative cellular wireless with unlimited numbers of base station antennas [J ] . IEEE Transactions on Wireless Communications , 2010 , 9 ( 11 ): 3590 - 3600 .
NGO H Q , LARSSON E G , MARZETTA T L . Energy and spectral efficiency of very large multiuser MIMO systems [J ] . IEEE Transactions on Communications , 2013 , 61 ( 4 ): 1436 - 1449 .
GAO X Q , JIANG B , LI X , et al . Statistical eigenmode transmission over jointly correlated MIMO channels [J ] . IEEE Transactions on Information Theory , 2009 , 55 ( 8 ): 3735 - 3750 .
ADHIKARY A , NAM J , AHN J Y , et al . Joint spatial division and multiplexing—the large-scale array regime [J ] . IEEE Transactions on Information Theory , 2013 , 59 ( 10 ): 6441 - 6463 .
SUN C , GAO X Q , JIN S , et al . Beam division multiple access transmission for massive MIMO communications [J ] . IEEE Transactions on Communications , 2015 , 63 ( 6 ): 2170 - 2184 .
LU A N , GAO X Q , ZHONG W , et al . Robust transmission for massive MIMO downlink with imperfect CSI [J ] . IEEE Transactions on Communications , 2019 , 67 ( 8 ): 5362 - 5376 .
YOU L , LI K X , WANG J H , et al . Massive MIMO transmission for LEO satellite communications [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 8 ): 1851 - 1865 .
LI K X , YOU L , WANG J H , et al . Downlink transmit design for massive MIMO LEO satellite communications [J ] . IEEE Transactions on Communications , 2022 , 70 ( 2 ): 1014 - 1028 .
HWANG T , YANG C Y , WU G , et al . OFDM and its wireless applications:a survey [J ] . IEEE Transactions on Vehicular Technology , 2009 , 58 ( 4 ): 1673 - 1694 .
ALI I , AL-DHAHIR N , HERSHEY J E . Doppler characterization for LEO satellites [J ] . IEEE Transactions on Communications , 1998 , 46 ( 3 ): 309 - 313 .
MA X L , YANG L Q , GIANNAKIS G B . Optimal training for MIMO frequency-selective fading channels [J ] . IEEE Transactions on Wireless Communications , 2005 , 4 ( 2 ): 453 - 466 .
YOU L , GAO X Q , SWINDLEHURST A L , et al . Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots [J ] . IEEE Transactions on Signal Processing , 2016 , 64 ( 6 ): 1461 - 1476 .
LIU X F , WANG W J , SONG X H , et al . Sparse channel estimation via hierarchical hybrid message passing for massive MIMO-OFDM systems [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 11 ): 7118 - 7134 .
YOU L , GAO X Q , XIA X G , et al . Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels [J ] . IEEE Transactions on Wireless Communications , 2015 , 14 ( 6 ): 3352 - 3366 .
LIU A , LIAN L X , LAU V K N , et al . Downlink channel estimation in multiuser massive MIMO with hidden Markovian sparsity [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 18 ): 4796 - 4810 .
COSTA M . Writing on dirty paper (Corresp.) [J ] . IEEE Transactions on Information Theory , 1983 , 29 ( 3 ): 439 - 441 .
QIANG X Y , YOU L , LI K X , et al . Hybrid A/D precoding for downlink massive MIMO in LEO satellite communications [C ] // Proceedings of 2021 IEEE International Conference on Communications Workshops . Piscataway:IEEE Press , 2021 : 1 - 6 .
GAO Z X , LIU A J , HAN C , et al . Sum rate maximization of massive MIMO NOMA in LEO satellite communication system [J ] . IEEE Wireless Communications Letters , 2021 , 10 ( 8 ): 1667 - 1671 .
CHRISTOPOULOS D , CHATZINOTAS S , MATTHAIOU M , et al . Capacity analysis of multibeam joint decoding over composite satellite channels [C ] // Proceedings of 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals,Systems and Computers (ASILOMAR) . Piscataway:IEEE Press , 2011 : 1795 - 1799 .
YANG Y , GAO X Q , XIA X G . A closed-form capacity upper bound of multibeam GEO MSC uplink channel [J ] . IEEE Wireless Communications Letters , 2016 , 5 ( 6 ): 576 - 579 .
COVER T M , THOMAS J A . Elements of Information Theory [M ] . New York : John Wiley & Sons,Inc. , 1991 .
SOYSAL A , ULUKUS S . Optimum power allocation for single-user MIMO and multi-user MIMO-MAC with partial CSI [J ] . IEEE Journal on Selected Areas in Communications , 2007 , 25 ( 7 ): 1402 - 1412 .
SOYSAL A , ULUKUS S . Optimality of beamforming in fading MIMO multiple access channels [J ] . IEEE Transactions on Communications , 2009 , 57 ( 4 ): 1171 - 1183 .
LI X , JIN S , GAO X Q , et al . Capacity bounds and low complexity transceiver design for double-scattering MIMO multiple access channels [J ] . IEEE Transactions on Signal Processing , 2010 , 58 ( 5 ): 2809 - 2822 .
LI X , JIN S , MCKAY M R , et al . Capacity of MIMO-MAC with transmit channel knowledge in the low SNR regime [J ] . IEEE Transactions on Wireless Communications , 2010 , 9 ( 3 ): 926 - 931 .
YE H , LI G Y , JUANG B H F . Deep reinforcement learning based resource allocation for V2V communications [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 4 ): 3163 - 3173 .
0
浏览量
1701
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构