浏览全部资源
扫码关注微信
1. 北京理工大学信息与电子学院,北京 100081
2. 北京邮电大学信息与通信工程学院,北京 100876
[ "买天乐(1994− ),男,北京理工大学博士后,在IEEE TCC、IEEE TON、IEEE TSC等学术期刊发表多篇学术论文,相关研究成果获IEEE ICC、IEEE IWCMC最佳论文奖等,主要研究方向为空天地一体化网络、无人集群网络、网络人工智能、多智能体系统等" ]
[ "姚海鹏(1983− ),男,北京邮电大学教授,在学术期刊和会议上发表论文150余篇,担任IEEE TMC 和 IEEE T-SUSC 期刊 Associate Editor,主要研究方向为未来网络架构、网络人工智能、空天地一体化网络、网络资源分配和专用网络等" ]
[ "忻向军(1969− ),男,北京理工大学教授,在学术期刊和会议上发表论文100余篇,主要研究方向为光通信、卫星通信等" ]
[ "杨景凯(1996− ),男,北京邮电大学博士生,主要研究方向为未来网络架构、网络资源分配和多智能体系统" ]
[ "靳辰朗(2000− ),女,北京邮电大学博士生,主要研究方向为未来网络架构、资源优化和博弈论等" ]
网络出版日期:2024-06,
纸质出版日期:2024-06-20
移动端阅览
买天乐, 姚海鹏, 忻向军, 等. 基于时空关联表征的空天地一体化网络资源精准管控方法[J]. 天地一体化信息网络, 2024,5(2):34-42.
Tianle MAI, Haipeng YAO, Xiangjun XIN, et al. Spatiotemporal Correlation Representation based Precise Resource Management in Space-Air-Ground Integrated Network[J]. Space-integrated-ground information networks, 2024, 5(2): 34-42.
买天乐, 姚海鹏, 忻向军, 等. 基于时空关联表征的空天地一体化网络资源精准管控方法[J]. 天地一体化信息网络, 2024,5(2):34-42. DOI: 10.11959/j.issn.2096-8930.2024014.
Tianle MAI, Haipeng YAO, Xiangjun XIN, et al. Spatiotemporal Correlation Representation based Precise Resource Management in Space-Air-Ground Integrated Network[J]. Space-integrated-ground information networks, 2024, 5(2): 34-42. DOI: 10.11959/j.issn.2096-8930.2024014.
空天地一体化网络中,资源分布不均匀且随时间动态变化。传统基于静态资源表征的优化调度方法仅在单个时间片上进行调度优化,资源利用率低,并且在网络变化时需频繁地重新调整策略,带来较大迁移成本。为解决这一问题,提出一种空天地一体化网络资源时空关联表征方法。该方法通过在网络的结构邻域和时序邻域两个维度计算节点注意力表征,实现对空天地一体化网络资源时空关联关系的精准建模。在此基础上,提出基于时空关联表征的网络资源精准映射方法,采用置信域策略梯度优化方法,对算法参数进行自适应学习与优化。
In the space-air-ground integrated network
resources are unevenly distributed and dynamically change over time.Traditional optimization scheduling methods based on static resource representation only optimize scheduling within a single time slot
leading to low resource utilization.Moreover
frequent strategy adjustments are required when the network changes
resulting in significant migration costs.To address this issue
this paper proposed a method for spatiotemporal correlation representation of resources in the space-air-ground integrated network.This method computed node attention representations in both structural neighborhoods and chronological neighborhoods
enabled precise modeling of spatiotemporal resource correlations in the space-air-ground integrated network.Based on this
this paper proposed a resource precise embedding method based on spatiotemporal correlation representation
and introduced the trust region policy optimization method to adaptively learn and optimize algorithm parameters.
买天乐 . 复杂场景下异构融合网络智能组网关键技术 [D ] . 北京:北京邮电大学 , 2023 .
MAI T L . Key technologies for intelligent networking of heterogeneous integrated networks in complex environments [D ] . Beijing:Beijing University of Posts and Telecommunications , 2023 .
项弘禹 , 肖扬文 , 张贤 , 等 . 5G边缘计算和网络切片技术 [J ] . 电信科学 , 2017 , 33 ( 6 ): 54 - 63 .
XIANG H Y , XIAO Y W , ZHANG X , et al . Edge computing and network slicing technology in 5G [J ] . Telecommunications Science , 2017 , 33 ( 6 ): 54 - 63 .
WU H T , ZHOU F , CHEN Y J , et al . On virtual network embedding:paths and cycles [J ] . IEEE Transactions on Network and Service Management , 2020 , 17 ( 3 ): 1487 - 1500 .
DOLATI M , HASSANPOUR S B , GHADERI M , et al . DeepViNE:virtual network embedding with deep reinforcement learning [C ] // Proceedings of the IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) . Piscataway:IEEE Press , 2019 : 879 - 885 .
RKHAMI A , QUANG P T A , HADJADJ-AOUL Y , et al . On the use of graph neural networks for virtual network embedding [C ] // Proceedings of the 2020 International Symposium on Networks,Computers and Communications (ISNCC) . Piscataway:IEEE Press , 2020 : 1 - 6 .
SANKAR A , WU Y H , GOU L , et al . Dynamic graph representation learning via self-attention networks [EB ] . 2018 .
SCHULMAN J , LEVINE S , MORITZ P , et al . Trust region policy optimization [EB ] . 2015 .
FISCHER A , BOTERO J F , BECK M T , et al . Virtual network embedding:a survey [J ] . IEEE Communications Surveys & Tutorials , 2013 , 15 ( 4 ): 1888 - 1906 .
YANG D , LIU J , ZHANG R , et al . Multi-constraint virtual network embedding algorithm for satellite networks [C ] // Proceedings of the GLOBECOM 2020 - 2020 IEEE Global Communications Conference . Piscataway:IEEE Press , 2020 : 1 - 6 .
MAITY I , VU T X , CHATZINOTAS S , et al . D-ViNE:dynamic virtual network embedding in non-terrestrial networks [C ] // Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2022 : 166 - 171 .
CHEN N , SHEN S G , DUAN Y X , et al . Non-euclidean graph-convolution virtual network embedding for space–air–ground integrated networks [J ] . Drones , 2023 , 7 ( 3 ): 165 .
LIU B , ZHANG T , ZHANG L M , et al . Online virtual network embedding for both the delay sensitive and tolerant services in SDN-enabled satellite-terrestrial networks [C ] // Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2023 : 1 - 6 .
YAN Z X , GE J G , WU Y L , et al . Automatic virtual network embedding:a deep reinforcement learning approach with graph convolutional networks [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 6 ): 1040 - 1057 .
YAO H P , MA S H , WANG J J , et al . A continuous-decision virtual network embedding scheme relying on reinforcement learning [J ] . IEEE Transactions on Network and Service Management , 2020 , 17 ( 2 ): 864 - 875 .
LI J D , DANI H , HU X , et al . Attributed network embedding for learning in a dynamic environment [C ] // Proceedings of the Proceedings of the 2017 ACM on Conference on Information and Knowledge Management . New York:ACM , 2017 : 387 - 396 .
TRIVEDI R , DAI H J , WANG Y C , et al . Know-evolve:deep temporal reasoning for dynamic knowledge graphs [C ] // Proceedings of the Proceedings of the 34th International Conference on Machine Learning - Volume 70 . New York:ACM , 2017 : 3462 - 3471 .
MAHDAVI S , KHOSHRAFTAR S , AN A J . dynnode2vec:scalable dynamic network embedding [C ] // Proceedings of the 2018 IEEE International Conference on Big Data (Big Data) . Piscataway:IEEE Press , 2018 : 3762 - 3765 .
ZHOU L K , YANG Y , REN X , et al . Dynamic network embedding by modeling triadic closure process [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2018 , 32 ( 1 ): 1 - 5 .
LU Y F , WANG X , SHI C , et al . Temporal network embedding with micro- and macro-dynamics [C ] // Proceedings of the Proceedings of the 28th ACM International Conference on Information and Knowledge Management . New York:ACM , 2019 : 469 - 478 .
LIM H K , ULLAH I , HAN Y H , et al . Reinforcement learning-based virtual network embedding:a comprehensive survey [J ] . ICT Express , 2023 , 9 ( 5 ): 983 - 994 .
VELIČKOVIĆ P , CUCURULL G , CASANOVA A , et al . Graph attention networks [EB ] . 2017 .
BRODY S , ALON U , YAHAV E , et al . How attentive are graph attention networks? [EB ] . 2021 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [J ] . Advances in neural information processing systems , 2017 , 30 .
CHENG X , SU S , ZHANG Z B , et al . Virtual network embedding through topology-aware node ranking [J ] . ACM SIGCOMM Computer Communication Review , 2011 , 41 ( 2 ): 38 - 47 .
YAO H P , LIU H W , ZHANG P Y , et al . A learning-based approach to intra-domain QoS routing [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 6 ): 6718 - 6730 .
MA S H , YAO H P , MAI T L , et al . Graph convolutional network aided virtual network embedding for Internet of thing [J ] . IEEE Transactions on Network Science and Engineering , 2023 , 10 ( 1 ): 265 - 274 .
0
浏览量
72
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构